~ AD-A252 232 | ‘ )

N PAGE o . o

- OMB No. 0700188
e P =y
Pyl ronEreny 100 thee ot LX . 10 JOragE | NOUr BIV FIBEMIR, MCIUEING tRE 1HNG (P FTVEWIRG AIFUCTION, OFCTIAY Sunmng Sutd
9 "y one  the Gots S ¢3¢ hg dne 9 the of . S0ne cO mmmmanmm
CONITUON OF IGMMOTION, LIINAY WAPIIDON tor g U OV . 10 q ey Servneen, "o on O " ang K 12195 Jorteonan
OOwn Meghusey, 3te 1108, Arengaon, VA 211024300, 18 10 The Otrce OF Mansqement s BudQet. #00rwors Asuurtion fromct (0704-0 188), Wasnngten, OC 0980

w_f
1. AGENCY USE ONLY (Leave diank) | 1. REPORT DATE

e e e et e
3. REPORY TYPE AND DATES COVERED

June 17, 1992 (b) Final Technical Report
4 TITLI AND SUSTITUL S. FUNDING NUMBERS

Intelligent Signal Processing for Acti§e Control C-N0OD01489~-J~-1633

st ——
6. AUTHOR(S)

P.A. Ramamoorthy

. PERFORMING ORGAN N NAME(S) AND ADDRESS(ES

§. PERFORMING ORGANIZATION ‘

University of Cincimnati
Dept. of Electrical & Computer Eng.
. Cincinnati, OH 45221-0030

REPORT NUMSER

10.

9. SPONSORING / MONITORING AGENCY NAME(S) AND AMISS((S; RING

Office of Naval Research AG!N:Y IIK,)II' NUMBER
Program Manager: Dr. Eric Hendricks, Code 122
800 N. Quincy St. )

Arlington, VA 22217-5000

77, SUPPLIMENTARY NOTES

ELECTE §
_ JUL O 11992 B
T35, DRTRBUTION | AVARASIITY STATIMENT T Ton s ‘

as

“This document has hon '

o ument has been appraye.; |
o1 Qublx_c rclease and salo: its o
stiibution is unlimited.

1: Alsma (Maxmimum 200 words)

This research is concerned with the use of neural architectures and fuzzy

expert systems in nonlinear system identification and in the control of such
systems. In particular, on-line identification/modeling is considered. The
research has resulted in a techniqie where the network can evolve (in size)

in time.so as to provide an optimal model/controller. Also an adaptive algorithm,
which is less sensitive to initial values of the weights and the learning rate,

has been developed. We have also established a common framework between neural
networks and fuzzy expert systems and developed a neuro-fuzzy architecture that
retains the best of the two areas. .The use of the architectures and the adaptation
algorithm has been demonstrated on a number of applicationms.

& SORICT TIRME

Neural Nets, Active Control, Fuzzy Logic, recurrent nets.

T X T
TR

SECURITY CLASSIFICATION | 20. umhlﬁ oF llSiEEi

OF ABSTRACT UL
unclassified

18. SECURITY CLASSIFICATION
OF Twis PAGE

.unclassified

19.

unclassified




- UNIVERSITY OF CINCINNATI
COLLEGE OF ENGINEERING

Intelligent Signal Processing For Active Control

92-16790 P.A. Ramamoorthy

mmﬂlmIﬂlll“l“lmmllm Department of Electrical & Computer Engineering

e

Final Report, Contract No. N0001489-J-1633

OFFICE OF NARUARL RESERRCH




Confract No: NOOO1489-J-1633 P.L: P.A. Ramoamoorthy

Iintelligent Signal Processing For Active Control

1 Executive Summary

The thrust of this research is in the evaluation of neural architectures
for nonlinear system identification and control of such systems. Also, it
involved investigation into merging of neural architectures and fuzzy
expert systems and the application of the hybrid architecture/approach
in nonlinear system identification and control.

System identification is the process of selecting suitable models
and identifying the parameters of the model to represent a system
under consideration. System identification is necessary before a suitable
controller can be designed to optimize the system performance. The
model is selected through some apriori knowledge (if available) of the
system or arbitrarily if no information is available. The parameters are
estimated from a large number of input/output samples obtained from
experiments on the system. The adaptation or training procedure
optimizes the parameter values to minimize a chosen error or cost
function. The adaptation may be off-line where all the I/O samples are
assumed to be available simultaneously or on-line where one /O
sample is available at a time and the model parameters are adapted
as and when they become available.

Linear models are well established for system identification since
they are mathematically tractable. AR (autoregressive or all-pole) and
ARMA (autoregressive moving average or pole-zero) models belong
to this category. Even under this simple case, we assume that the order
of the model is known and find the parameters from the training data.
Volterra-Wiener methods, Block-oriented methods (Uryson, Hammerstein
models) and self-organizing techniques (such as Group method of data
handling) are three techniques commonly used for nonlinear system
identification and each has certain disadvantages. For example, the
Volterra-Wiener series can be thought of as a Taylor series with memory
containing various cross-product terms of the input data to produce the
nonlinear effect. The problem here is that proper nonlinear terms have to
be included in the model before the parameters are estimated. Further,
the number of parameters in the model increases exponentially as the
nonlinear tems (say from 2-nd order to 3-rd order) are increased. Also,
being a Taylor series, it cannot be applied to all practical systems
(systems containing saturating nonlinearity, for example). The other two
methods have similar problems.

Statement A per telecon Eric Hendricks Avai a.d | or
ONR/Code 1221 Dist Special
Arlington, VA 22217-5000

NWW 6/30/92




Multi-layer neural networks can be thought of as modeis for

arbitrary nonlinear mapping (f: x = y, where x represents the input vector,
y the output vector and f, the nonlinear transformation). The nonlinear
mapping property is achieved by using tanh or sigmoidal nonlinearities
as the nonlinear building blocks along with linear building blocks such as
summation, weighting and bias. Since a tanh function comresponds to a
ratio of two infinite degree polynomial in its argument, through addition of
many such nonlinearities, layers and weights/summers/nodes, we
create a highly nonlinear mapping without requiring any apriori
information about the nonlinear terms that need to be present in the
model. The weights provide the “‘degrees of freedom" necessary to
obtain the desired mapping and by systematically increasing their
number, we can increase the accuracy of mapping or modeling. Thus, it
can be argued that neural networks can outperform other techniques in
nonlinear system modeling.

There are some problems in using neural networks for system
identification. The present approaches, assume a fixed structure
(number of layers and number of nodes in each layer) and use the
back propagation or derivatives of that algorithm to obtain the values of
the weights. If such a structure doesn't work out, then one has to change
the number of nodes etc (a trial and error procedure). Also, the back
propagation algorithm is extremely siow, may not converge (whence
the learning rate has to be adjusted and the adaptation procedure
continued) and sensitive to the initial values of the weights. Such
problems limit the use of neural networks in system identification and
prohibit their use in on-line system identification.

Considering these problems, we have developed a
methodology that will iet the network evolve (in size) in time through the
use of simple neural nets as building blocks. Such an approach makes
the adaptation much faster and further eliminates the need to guess the
correct number of nodes apriori and so on. It also makes the
adaptation less sensitive to initial values of the weights and the leaming
rate. We have also modified a well known algorithm in linear system
modeling known as the recursive least squares algorithms that has got
faster converging properties (This algorithm also has high computational
complexity which becomes an issue when a large number of weights
are involved. The time evolving architecture helps to overcome that
problem). Software for system modeling based on this approach has
been developed and tested on data generated from different system
models (linear, bilinear, saturating type nonlinearities and piece-wise
linear). The results are indeed encouraging and demonstrated clearly
that our new time evolving architecture and the algorithm could be used
to model nonlinear systems without requiring any apriori information
about the system structure, type of nonlinear etc. Of course, all our
simulations assumed that there is some knowledge about the memory
of the system and we need to make further simulations to see if that




requirement can aiso be eliminated or at least its effects can be
minimized!.

We have also investigated the application of the new, time-
evolving architecture and the adaptation algorithm in the design of
controllers (model reference adaptive control). The results indicate that
neural networks can effectively used to implement nonlinear controllers.
The results of this investigation have been presented in a number of IEEE
conferences (1-3 in list of publications). Copies of these papers are
appended to this report as appendices.

Fuzzy expert systems (FES) based on fuzzy logic can also be
considered as systems for functional mapping (linear or nonlinear). This
observation led to a study of the pros and cons of the two approaches
(NNs and FESs). We were able to show that fuzzy expert systems can be
mapped into an architecture that incorporates a number of smaller and
simpler multi-layer neural networks with structured interconnections
between them. This implies that though theoretically a two-layer (two
hidden layer) neural network can approximate any arbitrary mapping.
in practice, a fuzzy expert system can provide better approximation. This
can aiso be philosophically explained as follows: The neural network
approach uses two attributes of a system, 1) Large input samples; 2)
Corresponding output samples along with the training procedure to
model the system. It doesn't use any other information even if such
information is readily available. On the other hand, the FES approach,
uses six attributes of a system, 1) Input variables, 2) Output variables, 3)
Fuzzy sets of the input and output variables, 4) Membership functions
corresponding to those fuzzy sets, 5) Fuzzy rule base which indicate the
regions (fuzzy sets) to which the actual output(s) should belong given
that the input(s) belong to certain fuzzy sets and 6) Defuzzification
procedure to obtain the actual values of the output given the fact that
they lie under certain output fuzzy sets and the membership functions.
Thus, a FES uses much more information about the system than that of a
NN and hence ought to perform much better. More importantly,
information such as fuzzy sets and membership functions can be

deduced from the problem under consideration? rather easily.

Based on such considerations, in our research, we were able to
establish a common frame-work between NNs and FESs, and derive a
hybrid approach that combines the general working philosophy behind
FESs with the trainability "aspect of NN" to come up with a new
"Neuro_Fuzzy Architecture®” and methodology that retaqins the best of

1 The time-evolving property of the new architecture can aisc be used to minimize the
need for knowledge about the memory of the system.

2 The choice that we make for fuzzy sets and membership functions may not be the
same as the one used in the actual system, but they don't seem t0 make much
difference and under such circumstances, it appears better to incorporate such
information than incorporating none.




both worlds. We have completed initial expermentation with such an
architecture and the methodology in the design an optimal controller for
a specific problem (that of backing up a truck to the loading dock from
any reasonable starting position). The results obtained are indeed
encouraging. Copies of papers (4-6) describing the approach and the
results are attached.

Another exciting fall-out from this research and which we are
currently pursuing is that of the design of neural networks with feedback
(also known as recurrent neural nets) and nonlinear system design. In this
research, we showed that the neural networks (especially recurrent nets)
can be approached from an entirely different angle3 -- that of (or as
analogues of) passive nonlinear networks. Such networks are formed by
proper interconnections of various nonlinear elements where each and
every nonlinear element is constrained to be lossless or lossy4. When
energy storing elements (which themselves could be nonlinear) are
present in such a network, we can obtain a (or set of) input/Output
relationship(s) as nonlinear differential equation(s). The basic property
that the network is lossy (or consumes energy) ensures that the nonlinear
differential equations obtained from the network would represent
absolutely stable systems and this property will hold as long as the
individual element values are maintained in their permissible range of
values. Thus, to design complex nonlinear systems (a complex nonlinear
plant plus a controller to optimize its performance, for example), one
simply has to force the system dynamics to mimic the dynamics of a
properly constructed passive nonlinear network, a process akin to
reverse engineering.

In our investigation, which is in its early stages. we have utilized the
above approach and gpplied it with relative ease to a number of
probiems leading to encouraging results. The fruits of such an approach
seems to be endless. For example, the approach can be gpplied to
linear and nonlinear controller design (for linear and nonlinear plants),
self-tuning controllers, model reference adaptive controllers, Self-
organizing networks, adaptive IR filter design, adaptive beam forming,
Two-dimensional systems, fuzzy systems etc. In this We made a
presentation of this work recently (May 13, 92) at NOSC, San Diego.

3the neural nets concept has its origin in biological neural networks which have
tremendous capabilities in terms of rapid/robust recognition, leaming etc. it has been
the expectation of the research community that by mimicking such networks one would
be able to design complex systems with similar capabilities. However, @ major problem
in the design of recurrent neural networks is the question of stability and some ad hoc
methods have been developed to overcome this problem.

4 A number of new elements have been proposed for this purpose.




The two-year funding enabled the Pl and the Co-l to partially support a
number of graduate students. One former student, Dr. Phillip Pace now
works for General Dynamics and is scheduled to join Naval Post-
Graduate School in Sept. 1992 as an Assistant Prof. Govind Girish, Song
Huang and Shi Zhang are expected to complete their Ph.D's before the
end of this year.

2 List of Publicati

1. G. Govind & P.A. Ramamoorthy, "A new time-evolving neural
network architecture and algorithm for nonlinear system i
identification using adaptive filttering techniques,” Proc. IEEE  Infi.
Symp. Circuits &Systems, May 1992

2 G. Govind and P.A. Ramamoorthy, “Multi-layered neural networks
for arbitrary approximation: An explanation and simulations,: [EEE
Inti. Conf. on Artificial Neural Networks in  Engineering, Nov. 1991.

3. P.A. Ramamoorthy & G. Govind, "Multi-layered neural networks
and Volterra series: The missing link," Proc. IEEE InH. Conf.
Systems Engineering, Aug. 1990

4 P.A. Ramamoorthy, S. Zhang & S. Huang, "Adaptive fuzzy expert
systems for control applications,” Proc. Inll. Fuzzy Systems &
Intelligent Control Conf., Mar.1992.

5 P.A. Ramamoorthy & S. Huang, *Cerebellar model articulation
controller neural network - A simple fuzzy expert system in
disguise?." IEEE Intl. Conf. on Artificial Neural Networks in
Engineering, Nov. 1991.

é P.A. Ramamoorthy & S. Huang, “Fuzzy expert system Vs neural

networks for truck-backer-upper control problem'™ IEEE Inti.
Conf.Systems Engineering, Aug. 1991.

3 4 lix (Copies of publications)




A New Time-evolving Neural Network Architecture and
Algorithm for Nonlinear System Identification using Adaptive
Filtering Techniques!'

Girish Govind and P.A. Ramamoorthy
M. L. 30, Department of Electrical & Computer Engineering
University of Cincinnati, Cincinnati, OH 45221-0030

Abstract

Concepts from adaptive filtering and some heuristics are
utilized to obtain a fast comvergent online neural net-
work especially suited for nonlinear system identification.
Rather than training a fixed neural network structure,
the algorithm presented allocates nodes when required.
This provides for an optimal allocation of hidden nodes
in this structure. The resuits obtained show that the
neural network model presented is a viable approach for
Nonlinear System Identification and can be applied to
a large class of nonlinear systems. Simulations are pro-
vided that show the fast convergence of this neural net-
wotk structure. *

1. Introduction
The process of abstracting relationships between inputs
and outputs using only the data obeerved from the sys-
tem is called system identification{1]. Most of the re-
cent developments have been in the area of linear system
identification where a linear structure is assumed for the
model. However, most physical systems are nonlinear
and thus a nonlinear model is required to get a globally
valid model (true for all inputs) for a system.
Artificial neural networks have received increasing atten-
tion in recent years. Neural models are composed of a
_highly interconnected mesh of nonlinear elements (neu-
- rons) whoee structure is drawn from our current under-
standing of the biological neural system(2].
The main properties of multi-layered nenral networks are
their ability to learn from experience, generalize the
performance over untrained inputs, abetract relation-
ships between signals, and to arbitrarily approximate
any map given sufficient number of neurons. Clearly
these properties are the same as those of interest to re-
searchers in the area of system identification. Although
the above properties appear to be the solution to all the
problems in conventional system identification, in actual
practice there are other limitations that restrict their
performance. For instance, convergence is not easy to
obtain in multi-layered networks and may take several

1The work reported here has been supported by NASA
Headquarters through the NASA-UC Space Engineering Cen-
ter and Office of Naval Research Grant Number 00014-81.J-
1633

hundreds of thousands of iterations. Fine adjustment of
the learning parameters and repeated presentations of
the cvailable data are required for satisfactory approx-
imation. In online adaptation, the training is slow and
may not converge. There is also no method (or heuris-
tic) to select the number of hidden nodes for a good
approximation - less numbers can lead to an imprecise
model, excess numbers can make the training very slow
and provide poor generalization after training(3].

This paper describes an algorithm that has been devel-
oped for performing online adaptation of the weights.
Unlike the backpropagation algorithm that trains a fixed
structure(2], in this algorithm the network is built slowly
in a step-by-step fashion. This evolving architecture
methodology permits a near optimal allocation of hidden
nodes and at the same time, provides sufficient “degrees
of freedom™ for approximating a nonlinear system. Al-
though the computational complexity of this algorithm
per iteration could be higher than that of the stan-
dard backpropagation, it exhibits fast convergence. Also
as the network is built during training, the complexity
changes from iteration to iteration.

2. Nonlinear System Identification
System identification usually consists of two stages -
model selection, and parameter estimation. In neural-
based system identification, the selection of the number
of hidden nodes corresponds to the model selection stage.
The backpropagation algorithm utilizes gradient descent
to determine the weights of the network and thus corre-
sponds to the parameter estimation stage. Neural net-
works in system identification have not seen much change
since they were first proposed by Lapedes and Farber(4]
and also independently by us{S}.

The next section presents the development of an adaptive
peural algorithm that works quite differently from con-
ventional designs. It has some similarities with another
recent algorithm that performs model building combined
with parameter estimation(6] but as will be shown with
the chaotic prediction example, the presented algorithm
is far more parsimonious in the number of parameters,
and faster.

3. New Architecture and Algorithm
In a recent paper{3] it was discussed that the problem




of approximation in a multilayer neural network with bi-
nary neurons is NP-complete bat if the network can al-
locate more nodes it may be possible to solve a problem
in polynomial time, and thus we use an evolving archi-
tecture strategy. We restrict the scope of the presented
algorithm to problems of nonlinear system identification
where the input-output data is not binary.

A node is allocated when really required and the param-
eters are adjusted for other data points. The strategy
of allocation and adaptation is also accompanied with
a strategy for pruning as redundant or noncontributing
nodes may be allocated while growing, or nodes may be-
come 3o after adaptation. The next few paragraphs will
provide some more detail about these new heuristics and
in the next section these will be tested for some sample
problems.

In this paper we use a node with a gaussian bar{7)] acti-
vation function which is different from both the sigmoid
and the radia] basis functions as it has a semilocal re-
sponse. The neural structure used for this algorithm
is as shown in Figure 1. The bold lines are weighted
connections while the dotted lines are only performing
distributicn of the signals. The larger circles represent
nodes which perform a weighted summation of the inputs
and then propagate the sum through an adjustable gaus-
sian nonlinearity - these are referred to as hidden nodes,
the small circles represent an adjustable Zaussian non-
linearity - these will be called gaussian bar nodes. More
of each of these get allocated during the training proce-
dure. The output stage is linear and a parallel structure
that has direct connections (i.e. no hidden nodes) to the
output is also built. This total structure is used as a
model for approximating the problem at hand. This can
be written as

M P(m) Q
Yn = Z Z WamiNi(zZm) + ZwZnuNh(vh)
m=l =l hml
where
M R(m)
o = Z E WleN1i(zZm)
mu] (=]

where the following notation has been used: z. is one
of the M inputs, y, - one of the N outputs, w - the
parallel direct structure weights, w1l ~ weights of the first
layer, and w2 - weights of the second layer. The neural
structure after training can be described by the three
numbers, P(m) - number of gaussian bar nodes allocated
for direct structure input m, Q - number of hidden nodes,
and R(m) - number of gaussian bar nodes for first layer
input m. N, N1, or N2 represent adjustable gaussian
nonlinearities where both the center and the width is
adjustable.

Two parameters are very important for the allocation
process - a variable error threshold and a neighborhood
parameter is used to decide when new hidden nodes,
or new gaussian bar nodes should be allocated. These

thresholds are set to a high value at the start of the
simulation but are allowed to decrease slowly to a small
value. The neighborhood parameter discourages the al-
location of gaussian bar nodes very near to each other.
The complete detailed algorithm has not been
flowcharted here as it would require a lot more space
but the main ideas behind it are given here. If the mod-
eling error at the output is greater than the variable error
threshold value at the time, and the distance to the clos-
est neighbor gaussian bar node is greater than the vari-
able neighborhood threshold value then a new gaussian
bar node is allocated. However, if the modeling error
is much greater than the error threshold (several times
over) then a new hidden node is allocated (for the two
layer structure). If the error is less than the threshold
then no new structure is allocated but all the weights,
and the mean and variances of the hidden nodes and
gaussian bar nodes are adjusted to move towards lower-
ing the error.

The method to prune the gaussian bar nodes and the
hidden nodes is to check if the weighting factors at their
outputs are significant. This method is used to prune
gaussian bar nodes in the first layer (and the parallel
direct layer), and to prune hidden nodes in the second
layer. Other conditions to check for are the mean of the
gaussian bar node being adjusted and moved outside the
range of the signal or the gaussian node becoming just a
spike.

It is important to note that the above scheme is only a
hearistic, like several other methods that are in use today
to speed up the convergence. The heuristics presented in
this paper combine the stages of model selection and pa-
rameter estimation and work better than other training
algorithms. In The algorithm by Sanger(6] the network
is grown at regular intervals and never pruned. Here the
network is grown when desired, and pruned at regular in-
tervals. This pruning procedure is very important as it
improves generalization and also keeps the network size
in check, thus yielding a small network that can solve
the given problem.

4. Simulations

In this section, three examples are provided. Two exam-
ples are on online nonlinear system identification, and
one on online chaotic series prediction. The presented
performance is typical of the networks and the learn-
ing, and growing parameters are the same throughout
the simulations. The software has not been optimized in
any way at this time and yet each simulation takes no
more than ten minutes on a Sun workstation.

System identification ezample |

The following system is simulated and the network is al-
lowed to grow using the algorithm described in the pre-
vious section.

w{k + 1] = 0.8y(k] + (w(k] ~ 0.8)u(k](u{k] +0.5)




Uniformly distributed random noise in the range [-1, 1}
is used for the input u(k]. The modeling error is used to
grow or adapt the network structure in an online fashion.
As can be seen in figure 2 the network quickly learns the
input-output mapping. The final network structure was
Pl)=17 P(2) =9, Q=35 R(1) =85, and R(2) =
3. After this training, the parameters of the network
were kept fixed and the network tested with the actual
model data. This is shown in figure 3 and the actual and
modeled output are not distinguishable.

System identification ezample 2

The system in this example is a multi-input, multi-
output one with four inputs and two outputs.

[yx[k+1] - P +[
valk + 1] z}%‘fl

The two inputs u;[k] and uak] are random uniformly
distributed in the range [-1, 1]. This model corresponds
toa M =4, N = 2 model, and after convergence the
structure has the P values as 10, 12, 13, and 15. The
number of hidden nodes was 25 (this was imposed on the
model), and the R values were 21, 18, 13, and 15. After
the model has been constructed the network output was
compared against the actual model outputs. These are
shown in figures 4 and 5. Here, the network outputs are
not as exact as the other simulations but this is due to
the restriction placed on the number of hidden nodes.

Chaotic prediction: Mackey-Glass (r = 30)

1 [k]
ua (k]

This is a classic benchmark problem for neural network
training algorithms. This was first used by the Los
Alamos nonlinear dynamics group and is now tested for
by every known multi-layered training method.

0.2z(t —r)

_A fourth-order Runge-Kutta is used to provide values of
z at discrete time steps. The initial condition used is
z = 0.8. This problem corresponds to a 6 input (M =
6), one output (N = 1) problem. The six inputs corre-
spond to z{t — 6m], m = 0..5, and the desired output is
z(t + 6]. The training error squared is shown in figure 6
and exhibits the usual fast convergence. The actual se-
ries is plotted against the predicted series for a six-step
ahead prediction in figure 7. Prediction further into the
future can be made through iteration of the map. The
network constructed here has a normalized performance
index of 0.05 which is almost as exact as the simulation
by Sanger{6]. In that paper there were 20 sinusoidal ba-
sis functions used for each of the 6 inputs and 106 trees
were constructed i.e. the total number of estimated pa-
rameters was over 12,000 from about 42,000 samples. In
contrast to that simulation, the algorithm presented in
this paper constructed a network of P values as 5, 7, §, 4,
4, and 7. There were 18 hidden nodes, and the R values

1) = - 0.12(1)

were 8, 10, 9, 5, 6 and 10. Considering all the parameters
this corresponds to less than 2000 parameters. Thus this
algorithm is very parsimonious in the parameters.

5. Discussion and Conclusions

In this paper some heuristics have been presented that
allow fast and online construction of nonlinear input-
output maps from data. Unlike the usual muitilayered
neural network where apriori knowledge is difficult or im-
possible to incorporate into the network, in the presented
algorithm it is straightforward.

It is expected that the presented algorithm will find
use into some engineering applications which require on-
line performance - particularly channel equalization, and
nonlinear adaptive control.

References

{1] L. Ljung, System Identification: Theory for the User.
Englewood Cliffs, NJ: Prentice-Hall, 1987.

[2] J. Hertz, A. Krogh, and R. G. Palmer, Introduction
to the theory of neural computation. Reading, MA:
Addison-Wesley, 1991.

(3] E. B. Baum and D. Haussler, “What size net gives

valid generalization,” Neural Compultation, vol. 1,
pp. 151-160, 1989.

(4] A. Lapedes and R. Farber, “Nonlinear signal pro-
cessing using neural networks: Prediction and system
godelluglg " tech. rep., Los Alamos National Labora-~

Iy, .

[5] P. A. Ramamoorthy, G. Govind, and V. Iyer, “Signal
modeling and prediction using neural networks,” in
International Neural Network Society First Annual
Meeting, (Boston, MA), September 1988.

[6] T. D. Sanger, “A tree-structured adaptive net-
work for function approximation in high-dimensional
spaces,” [IEEE Trans. on Neural Networks, vol. 2,
pp. 285-293, March 1991.

{7] E. Hartman and J. D. Keeler, “Predicting the future:
Advantages of semilocal units,” Neural Computation,
vol. 3, pp. 566-578, 1991.

Outputs

11ar woules

Ao
1nputs
Figure 1. Neural Network structure.




12 v
1
0.8 4
06
04
02
et N
0 1000 2000 3000 4000 S000 6000 7000 8000
Figure 2. Identification example 1:
Modeling error (squared)
during training.
23 v -
2 >
15}
l -
05
0 A f | L\
T T AT TR
-1
-15
2
00 70 740 60 T80 800
Figure 4.  Identification example 2,
Output # 1: Comparison
between actual model out-
put and network output.
0.45 - v v v v v v
04}
035 |
03}
0as } -
o2 ¢
0.13 1 L
0.1 y
0.05 4
0 Lociobbibas o -
0 1000 2000 3000 4000 35000 6000 7000 3000
Figure 6.  Prediction example: Online

training error (squared).

2

180 200

160
Identification example 1:
Comparison between the
actual model output and
the network output.

140
Figure 3.

15}

1
05 K
0
05
-1t
-15

14

12

1

08}

06

04

02

v

o

r

|
‘ zLH “'{‘
v” | wa

" e A

uw

740 760 70 - 800

Identification example 2,
Output # 2: Comparison
between actual model out-
put and network output.

v L - v

0 10 20 0 40 0 &0 %0 80
Figure 7.  Prediction example: Com-

parison between actual se-
ries and six-steps ahead
predicted series.




Multi-layered Neural Networks for
Arbitrary Approximation:
An Explanation and Simulations

Girish Govind and P.A. Ramamoorthy
Mail Location # 30
Signal Processing and Computer Vision Group
Department of Electrical and Computer Engineering
University of Cincinnati
Cincinnati, OH 45221-0030

Abstract

Recently there has been a lot of research into
the approximation properties of multi-layered
neural networks. The appareat ability of uni-
versal approximation by multi-layered neural ne:-
works is of interest as it would be very useful in
several applications including system identifica-
tion and control. In this paper we focus our at-
tention on system identification and bring out cer-
tain similarities and differences between the con-
ventional Voiterra Series techniques for nonlinear
system identification, and the neural network ap-
proach. Using concepts such as Continued Frac-
tion expansions, the neural network is shown to
be able to approximate very highly nonlinear sys-
tems with a few weights as compared to a Volterra
Series which required a large number of coeffi-
cients to perform the same task. Also, the neural
network can approximate nonlinear systems that
cannot be approximated by the Voiterra Series
approach. Simulations are presented to show the
superior performaace.

1 Introduction -

System Identification involves the selection of
proper models and inferring the model pa-
rameters {rom observations. The quality of
fit is obtained using a suitable c.ror crite-
rion. The model can be linear or nonlinear.
Linear models are weil established for svs-
tem identification(l], however nonlinear sys-
tem identification has not received as much
attention as it is usually more difficult to come
up with the proper models and algorithms to
estimate their parameters. Hence, nonlinear
systems are normally approximated using lin-
ear models by restricting the range of pertur-
bation to a fixed and small range. However,
such a model is restricted for system oper-
ations within that range, and to develop a

globally valid model (valid for all inputs) for
a nonlinear system, a nonlinear model has to
be used.

The Volterra-Wiener approach is the most
commonly used technique for nonlinear sys-
tem modeling and is weli established(2]. Neu-
ral Networks were proposed for nonlinear sig-
nal processing and system modeling about two
years ago by Lapedes and Farber(3], and in-
dependently by us{4]. Since then there have
been several papers applying the neural net-
works like a “black box” to almost every non-
linear task. However little attempt has been
made to try to compare the neural network
method with conventional methods of non-
linear system identification to put them in a
proper perspective. Such an approach would
enable us to identify the poteatials and draw-
backs of neural networks. Further, it will en-
able us to arrive at new adaptation algorithms
and architectures.

2 Nonlinear System Iden-
tification

There are a number of Nonlinear System
Identification techniques available in the lit-
erature (see for example, the excellent sur-
vey in [5]). These methods can be clas-
sified as ~ block-oriented systems, parame-
ter estimation methods for particular model
structures, heuristic GMDH (Group Method
of Data Handling) methods, functional series
methods of Volterra and Wiener, and the new
multi-layered Neural Network approach {3, 4].
In this paper we concentrate on the two re-
maining methods, the Volterra series and the
multi-layered neural network approach ~ both
are general methods that can be used for iden-

ANmE- T/




tification of a large class of nonlinear systems.
To relate to the rest of the paper, we now
present the salient ideas of the two methods.

2.1 Volterra series

The Volterra series can be considered as a
Taylor series with memory and can be writ-
ten as

N
vin] = ho +Zh1[i]z[n- i+

N N
Y3 halidleln = dafn = 5]+ -+
=0 j=0
for the representation of a nonlinear time-
invariant causal system. Just as a linear time-
invariant system is completely characterized
by its irnpulse response, a nonlinear system is
represented (globally) by a Volterra series is
completely characterized by its Volterra ker-
nels - Ay, Ay - ... Symmetry can be assumed in
the higher order kernels e.g. ha[i, j] = h2{j, 1]
without imposing any restrictions on the class
of systems that can be represented.
According to the theury, any nonexplosive,
time-invariant, causal system with a fading
memory can be approximated by a Volterra
Series(6]. In practice, the order cannot be in-
creased to an arbitrarily high number as 1)
then the measurement of each Volterra kernel
is not simple, their individual responses can-
not be separated and 2) the number of points
in the kernel to be estimated increase expo-
nentially with the order of the kernel and the
delay (N) used. For a Volterra model using N
inputs, for each order k, the aumber of points

- for which the kernel needs to be estimated is

N*/k. These problems with the-Volterra se-
ries, impose severe restrictions on the applica-
tion of Volterra series to many practical sys-
tems. Hence, most applications are restricted
to systems where ‘mild’ polynomic nonlinea:-
ities are present and second or third order
models are sufficient. Recursive least squares
algorithms have been deveioped(7] and used
in this paper for obtaining the second order
and third order Voiterra kernels with some-
what reduced computational complexity.

In addition, as the Volterra series can be
considered as a power series with memory,
there are other limitations. For example,
it does not converge for certain noalinear
systems{2] such as saturating elements, and
systems which have high order noanlinearities
require a very large number of terms to yield
an acceptable representation.

Wiener functionals alleviate the problem cf
measurement by using orthogonal function-
als derived from the Volterra functionals for
white Gaussian inputs, and are convergeant for
a broader class of systems. However, the prob-
lem of large number of terms in the functionals
is still present and the input has to be white
Gaussian (or made 30) and hence is not very
practical.

2.2 Multi-layered Neural Net-
works

The multi-layered feedforward net with sig-
moidal noalinearities was shown to be able to
approximate arbitrary nonlinear systems by
Lapedes (3] and independently by us (4]. Be-
sides their approximation capabilities, multi-
layered neural networks can be trained from
a large data set without requiring any apri-
ori information about the system (structure
and order). The backpropagation algorithm is
commonly used to train a multi-layered feed-
forward neural network(8].

The Kolmogrov Theorem is commonly used
to justify the neural network approach to
nonlinear system identification. This theo-
rem states that a two layer neural network
is sufficient for approximating arbitrary non-
linear systems given sufficient number of hid-
den nodes. Recently, it has been discussed
that the Kolmogrov Theorem is actually irrel-
evant to the approximation property of neu-
ral networks [9] as Kolmogrov Theorem only
talks about the representation of functions
of a certain number of variables as functions
(94) of functions (hy, which can be sigmoidal)
of fewer (one or more) variables. It is sug-
gested that Kolmogrov Theorem may not ap-
ply to the representation properties of neural
networks as it is based on using the same
sigmoidal function in the place of properly
chosen continuous functions. Certain ap-
proximations might require highly nonsmooth
functions whereas the sigmoidal function is
a very smooth function(9]. The smoothness
property is very important for learmning and
generalization.

In epite of the sbove remarks, in practice
the neural network method for approximating
an arbitrary input-output map seems to work
well though it is quite conceivable that there
are specific methods that work better for a
particular problem. In the next sections, we
view the approximation problem from a dif
ferent perspective and present arguments and




simulation results that establish the validity
for the use of multi-layered feedforward neu-
ral networks for modeling nonlinear systems.

3 Approximation by Neu-
ral Nets

Here we shall concern ourselves only with
functions realized by the neural network after
convergence, and not on the training. In such
a network the sigmoidal function is the nonlin-
earity that imparts it the nonlinear mapping
property. Other approximation schemes can
also be depicted as networks having different
basic functions. In general, the approximation
of functions can be considered as a two-step
process

e Choosing a set of basis functions &(z, w)
that are defined in the region of interest
of the input z, and

o Determining the parameters w in the ba-
sis functions to get a good fit.

In conventional approximation techniques
the choice of basis functions is made consider-
ing the classes of functions that can be effec-
tively approximated by them. To measure the
quality of the approximation a distance mea~
sure (which is usually the L; norm) is used.
Clearly, Volterra Series can also be consid-
ered as an approximation function. where the
basis functions consist of power and product
terms in the inputs. However, approximation
by multi-layered feedforward neural networks
does not fit into the above picture of approx-
imation theory. The approximation function
f(=) for the net is the nested sigmoid equa-
tion.

f(z) = g(z w20;g(Z wl2,-y(z wllyzs)))
[ J k

where the nonlinearity g is sigmoidal. Thus
the basic function g is embedded in the net-
work and so are the weights (variable param-
eters). Now we give methods of analyzing the
above approximation functions using coatin-
ued fraction expansions for the embedded sig-
moid functions.

Continued fractions{10] have been used in
the past for digital filter synthesis, computer
evaluation of functions, coding theory and
prime factorization algorithms. They yield
representations for functions which are very
exact. The expansion for tanh (a sigmoidal

function) when truncated after the fourth con-
vergent can be written as

E 4

l+;+—§;

e

tanh(z) =

or

105z + 10z
105 + +zt

A plot of this would show clearly that
the truncated continued fraction expansion is
very accurate while a corresponding truncated
Taylor series expansion is wildly oscillating.
In fact, some truncated forms of the expan-
sion using Taylor series were even unbounded.
Hence we will be using the “truncated contin-
ued fraction” expansion for the tanh function
in this paper.

Coansider the structure in Figure 1 with two
hidden nodes and one output node. The input
to the hidden layer node i is an affine trans-
formation of the inputs

tanh(z) =~

z1{i] = wil[{][1].2(n)+wl1{][2]-z(n=1)+01(]

Then the output of each of the two nodes of
the first hidden layer would consist of a ratio
of polynomials in z(n] and 2{n — 1] with their
cross-product terms. The numerator expres-
sion will have 10 terms (and coeficients) and
the denominator expression having 14 terms
(and coefficients). These terms are derived
from the inputs and all the coefficients here
depend on the values of the three free vari-
ables, the weights - wl1[i][1], wI1[i][2], and
01(i]. Thus there are only three “degrees of
freedom” in choosing the 24 coefficients.

vin]

wlO

wil

zn~1]

Figure 1: A simple neural netwock

z{n]

It can be noted though that this form is
clearly more general than that of the Volterra




representation which takes the form of a
power series. Further, in Volterra represen-
tation we make apriori assumptions about
the nonlinear terms that need to be present
whereas an infinite order is used in neural net-
works and can model much higher order non-
linearities that are practically impossible with
the Volterra series.

At the next layer of weights the process is
repeated and the output of the next layer is
agsin a ratio of series in its inputs. It cannot
be written out here conveniently but it can
be visualized that the final form {rom input
to output is a ratio of two infinite order series
in the inputs.

It is known that for an arbitrary input-
output map, an exact representation is
impossible[11]. However as shown above, the
Neural Networks can generally provide a bet-
ter approximation than other techniques. In-
creasing the number of nodes in a layer; or
increasing the number of layers increases the
number of “degrees of freedom” for the neu-
ral network leading to better approximations
though that also increases the possibility that
the network may be trained onm outliers in the
case of noisy data.

. When only one hidden layer is used, the
output will consist of summations of sigmoidal
outputs of affinely transformed inputs. The
approximation capability of such a network
-would be very limited. Obviously adding more
layers produces more complex nonlinear terms
and hence intuitively it can be stated that a
two-layer network would approximate an arbi-
trary mapping much better than a single-layer
. network with the same degree of freedom. The
same conclusion is arrived in [12] using rigor-
ous real analysis.

‘4 Simaulations .
In this section a number of simulation exam-
ples are provided to show the approximation
capabilities of neural networks and compared
with the performance of conventional Voliterra
nonlinear techniques.
In the simulations, the Normalized Root
Mean Square Error (NRMSE)

E[(3{n] = yn]))}/?
E{(yin] - Ely(n]]*]*/?
is used as a performance index. Table 1 at
the end gives the details of the simulations

performed. I[n cases where the output val-
ues were scaled, the scaled data was used for

NRMSE =

all three simulations. Neural structures used
have been specified as a-b-c-d where a, b, ¢,
and d are the nodes in the input, first hidden,
second hidden, and the output layers respec-
tively.

Medel 1

This is & purely linear model and was sim-
ulated to show that the neural network is
also capable of approximating linear map-
pings. It should be noted that though a lin-
ear model would converge exactly to the sim-
ulated model and hence the fixed weight mod-
eling error would be nearly zero (within a few
iterations), the neural network error is only
small (after several hundred iterations). Thus
a linear model should be tried before model-
ing with neural networks as for linear map-
pings the linear model is more accurate, and
less effort is required for a fit.

Figure 2: Model 1 Neural frogen error

Model 2

A second order Volterra model was very ac-
curate and estimates of the parameters were
exact. The muiti-layered neural network with
3.5-5-1 nodes was as exact as the Voiterra
model. Thus for structured nonlinearities, the
neural network is capable of working as well
as Volterrs models.

Model 3

This simulation clearly shows the ability of
s nsursl network to model high order non-
linearities (the sine function can be expanded
as an infinite Taylor series about x=0). The
Volterra model does not coaverge. On the
other hand, a multi-layered neural structure
of 2-5-5-1 nodes was very accurate.




Sgused Sensm sver

.&LL—-J-‘H‘-LBL&&-M e _ L‘b‘— din dan,
® 1000 [ ] 1000
ndas . ades

Figure 3: Model 2 Volterra frozen error Figure 6: Model 3 Neural frozen error

PSP WY

'.‘

Sypased freses erver

Figure 4: Model 2 Neural frozen error Figure T: Model 4 Volterra frozen error

map. For this nonlinear system there are two
Volterra models, depending on the range of
the input, one model for | z [< 0.2 and an-
other one for | z |> 0.2. Modeled separately it
would give accurate Voiterra models but this
may not be possible as the input to the nonlin-
-earity could be an internal signal in a system.
The neural network has no such problem as it
has & numerator and denominator of polyno-

Figure $: Model 3 Volterra frozen error -

<
8. 4
<

_Model 4 ;

0.
Even though the nounlinearity was simple, }
nouexplosive, and time-invariaat, 0o suitable ’ 3
Volterra model could be found. A simpile neu- -..
ral network of 1-2-2-1 nodes was used and gave .
a very accurate repressutation of this noalin-
eurity. The graph is not shown here as the e o "
error was insignificant in comparison with the hoann
error with the Volterra model.
The frosen input-output map is shown Figure 8: Model 4 approximations
in Pigure 8. The neural network modeled
the nonlinearity almost exactly and is indis-
tinguishable from the original input-output

fan T Y
Sassadads




Simulaied Sysiam Input Cutpus Simulntivus
Moisl  Figwre NRMST
:" hm' sinss FL3s, 123 m -— | ecom
yia] = 0.5u{u] + 0.25u{w-2} (0.8, ) sealed to
wlal, uieel] & Newral
wn-2] 0.85. 0.9} 2551 3 .1028
Whits Geussian .93 Veltarrn 0688
N{(o.0, 0.36) ar | 28d order ¢
ylal = 03u(n} + 0.35u(s-1juis-2| o, wlort] & sonied ta -
.05, 093 3851 3 sons
White Uni& 138, 1.48) L*-m" ¢ L6742
yia} = 0.7din(u(a]) + 0.2ufn-1] (4.0, 404 soaled to prw—
uls} & w1} 808, 8.85] 2551 i 4 s.1003
White Uniforis Voltarra s 0.430¢
Sxin]
Yo = e Fas, 09y pas ey [Sodenis
1+ (3xfu)) sl , Nearsd — | ec2ee
1-3.2-1
Table 1. Simulations on various models.
5 Conclusions work Society First Annual Meeting, (Boston,

MA), September 1988.

In.thi’ paper ml‘xlti.-la.yered neural networks (5] 5 A, Billings, “Identification of nonlinear
using “tanh” building blocks are compared systems - a survey,” [EE Proc. Part D,

with conventional Volterra series methods for vol. 127, pp. 272-28S, November 1980.

the task of nonlinear system identification. (61 5. Boyd and L. O. Chua, *Fa ding memory
For the neural model, model selection corre- g and gi, problem of a::mximuing nonlin-
sponds to selecting a suitable structure for ear operators with Volterra series,” /EEE
the representation which controls the num- Trans. on Circuits and Systems, vol. CAS-

ber of degrees of freedom. For highly non- 32, pp. 1150-1161, November 198S.
linear systems, muiti-layered neural networks (71 v J. Mathews and J. Lee, “A fast recursive

provide a representation with only a few least-squares second order Volterra filter,” in
weights, where conventional Volterra series Proceedings of the ICASSP, 1988.
methods would not be computationalily prac- (8] R. P. Lippmann, *An introduction to com-
tical. Also, for some simple nonlinear sys- puting with neural nets,” [EEE ASSP Mag-
tems which are bounded-input and bounded- arine, pp. 4-22, April 1987,

output, the Volterra series does not exist al- . . .
though it is handled easily by a small petwork. 1 oo s ot remort Kot
port the ideas presented here. vol. 1, pp. 465469, 1989.

. {10] M. H. Hayes, “Continued fractions,” /[EEE
References ASSP Magazine, July & October 1989.

{11] T. Poggio and F. Girosi, “A theory of net-

(1] L. Ljung, System Identification: Theory for works for approximation and learning,” tech.

the User. Eaglewood Cliffs, NJ: Prentice- tep., M.LT. Al Laboratory and Center for

Hall, 1987. Biological Information Processing, 1989.

{2] M. Schetzen, *Nonlinear system modeling (12] G. Cybenko, “Continucus valued llﬂn! net-
based on the Wiener theory,” Proc. of the works w\th. two hidden layeu. are sufficient,”
IEEE, vol. 69, pp. 1357-1573, December Mathematics of Controls, Signals and Sys-
1981. tems (submitted), 1988.

{3] A. Lapedes and R. Farber, “Noulinear sig-
nal processing using neural networks: Pre-
diction and system modeling,” tech. rep., Los
Alamos National Laboratory, 1987.

(4] P. A. Ramamoorthy, G. Govind, aad V. Iyer,
“Signal modding aad prediction using nev-
ral networks,” in International Newral Net-




FVM;

Takennalional Co‘*ua on

Siptiwn w’l' Picsmumgn , Pago 199

Multi-layered Neural Networks and Volterra Series:
The Missing Link

Girish Govind and P.A. Ramamoorthy
M. L. 30, Signal Processing and Computer Vision Group
Department of Electrical and Computer Engineering
University of Cincinnati
Cincinnati, OII 45221-0030

Abstract

This paper is an attempt to bring out the similar-
ities and differences between the conventional Volterra
series techniques and the new neural network approach.
The analysis is done from the point of view of represen-
tation capabilities for nonlinear systems and it is shown

that a small neural network can represent high order

nonlinear systems while a very large number of terms
are required for an equivalent Volterra series represen-
tation. This is shown by means of a series expansion
of & neural network. Finally this paper analyses issues
common to the two nonlinear modeling approaches.

1 Introduction

Many problems in controls and signal processing
require accurate models of the systems involved,
systems which are usually nonlinear to some ex-
tent. System identification techniques are well es-
tablished for linear systemss and are widely used,
but methods for nonlinear systems have not re-
ceived as much exposure. This is due to their in-
herent complexity, and difliculties in deriving iden-
tification algorithms for models which would be ap-
plicable to a large class of nonlinear systems. Al-
though it is possible to represent nonlinear systems
by linear models for a restricted operating range
and use the well developed system identification
techniques [1], a nonlinear process can only be char-
acterized by a nonlinear model.

Nonlinear system identification [2] methods can
be of several types — [unctional series methods of
Volterra and Wiener, block-oriented systems, pa-
rameter estimation methods for particular model
structures, heuristic GMDII (Group Method of
Data landling) methods, and the new Neural Net-
work approach [3]. Block oriented techniques re-
quire structure detection, and parameter estima-
tion methods vary depending on the model used.

The GMDII algorithms are self-organizing and
heuristic in nature.

In this paper we concentrate on two of these
methods, the Volterra series and the multi-layered
neural network approach - both are generai meth-
ods that can be used for identification of a large
class of nonlinear systems. In the next two sections
we present the salient points of the two methods.

2 Volterra series

The Volterra series can be considered as a Taylor
series with memory and can be written as

N .
yin] = ho+ E hy[ijz[n - i] +

§=0

N N
3.2 hali, jlzin - dzln - ] + - -

i=0 j=0

for the representation of a causal system.
A nonlinear system represented (globally) by a
Volterra series is completely characterized by its
Volterra kernels.

As the Volterra series can be considered as a
power series with memory, there are limitations of
convergence in its application to nonlinear prob-
lems [4]. For instance, the Volterra series cannot
be used to represent saturating elements, and sys-
tems which have high order nonlinearities require a
very large number of terms to yield an acceptable
representation. However according to the Weier-
strass theorem the system can be uniformly approx-
imated over a bounded interval. Measurement of
the Volterra kernel is not casy as the contribution
of each Vollerra operator cannot be separated from
the total system response.

As can be seen from the above series, the num-
ber of terms in the kernels of the series increases




exponentially with the order of the kernel and the
delay (N) used. ‘This is the most difficult problem
with the Volterra series and imposes severe restric-
tions on the application of Volterra series to many
practical systems. llence, inost applications are re-
stricted to using second order models. Recursive
least squares algorithms are used in this paper for
obtaining the second order and third order Volterra
kernels with reduced computational complexity.

Wiener functionals alleviate the problem of
measurement by using orthogonal functionals de-
rived from the Volterra functionals for white Gaus-
sian inputs, and are convergent for a broader class
of systems. Ilowever, the problem of number of
terms in the functionals is still present and the in-
put has to be white Gaussian (or made s0) and
hence is not very practical.

3 Multi-layered Neural Nets

The error propagation net was first shown to be
able to approximate arbitrary nonlinear systems by
Lapedes [3] and independently by us [6]. The error
propagation network is explained in detail in [6].

u(n)
Output
Hidden
Layer 2
Hidden
Layer 1
Input Layer
u(n) D D

Figure 1: Multi-layered Neural Network

The neural network approach to Nonlinear sys-
tem identification is based on the Kolmogrov Neu-
ral Network existence theorem [6] which states that
a two layer neural network is suflicient for approxi-
mating arbitrary nonlinear systems given suflicient
number of hidden nodes. Although the Backprop-
agation algorithm which is used to train the multi-
layered neural networks is a straightforward exten-
sion to the well-known Least "fean Square (LMS)
algorithm for linear structures, its convergence pa-
rameters have to be finely adjusted to get fast con-
vergence. In the simulations in this paper we have
used a conjugate-gradient technique for training the

weights - this provides relatively fast training of
weights and no adjusting of step and momentum
terms is required to obtain convergence.

4 Expansions for Neural Nets

In this paper we shall concern ourselves with func-
tions realized by the neural network after conver-
gence. The nonlinearity used in multi-layered neu-
ral networks is known, typically the sigmoid or the
tanh function. In this paper we shall use the tanh
function for the expansions, simulations and the
discussions. Corresponding work for the sigmoid
can be easily seen as the two functions are related.
The tanh function can be written as
e -1
52: + 1

and the exponentiation function can be ex-
panded as a Taylor series about z = 0.

tanh(z) =

2 _ (22)* | (22)°
e’-1+2z+T+T+...

which is a valid expansion for all real values of
2. Therefore the tanh function can be written as

x4+ Gf 4 G 5.
2424+ L 4 C2F 4.

for all values of x.

Cybenko [7] and others have shown the approx-
imation capabilities of the multi-layered structure
using real analysis techniques. This paper analyses
the multi-layered structure using series expansions
to show the origin of some of those properties and
relate them to corresponding ones of the Volterra
series at a more intuitive level.

tanh(z) =

Consider the structure in Figure 2 with two hid-
den nodes and one output node. The input to the
hidden layer node i is

z1[i] = wil(i]{1].z(n)+ wll{i]{2).z(n—1)+thetal(i]

and if we assume the representation of tanh to
be approximated by terms in the expansion up to
the third order, then the output of each of the
two nodes of the first layer consists of a tatio of
third order polynomials poly{i] each having 10 coef-
ficients multiplying terms derived from the inputs.
These 10 coeflicients are in turn derived from the
three “degrees of freedom”™ wl1{i](1}], wl1{i}[2] and
thetal(i] and the output is of the form

polyli]
2 + polyli]

The polynomial poly{i] can thus be chosen only
with a certain number of degrees of freedom and




yn]
wlO

wil

z[n]

Figure 2: A simple neural network

zin- 1)

this restricts its use to only very simple systems.
This form is however clearly more general than
that of the Volterra series which only consists of
a series as this expansion has a numerator series
and a denominator series. Even though here only
a truncated third order form is shown it is actually
an infinite order polynomial and can model much
higher order nonlinearities than are practically pos-
sible with the Volterra series.

At the next layer of weights the process is re-
peated and the output of the next layer is a ratio
of polynomial in its inputs. It cannot be written
out here conveniently but it can be visualized that
the final form from input to output is a ratio of two
polynomials in the inputs. Thus

Numerator polynomial in inputs
Denominator polynomial in inputs

yln} =

and both polynomials are of an infinite order.
There are however only limited “degrees of free-
dom” in choosing these polynomials as their coef-
ficients are a function of the weights and in the
network above there are only 9 weights. More hid-
den nodes may be required to tailor the response
more closely.

5 Simulations

In this section the insight derived in the last section
is strengthened by simulation examples.

Modd 1 5 x z[n|

W = T w2 p)?

This model is from [4] and here z[n] was a uniformly
distributed randomn variable with excursion [-0.9,
0.9]. A third-order no-memory (N = 0) Volterra
model was used and the four terms were identified
using Recursive Least Squares. A neural network

structure of 1-2-2-1 nodes was used. Modeling er-
ror results with frozen weights are shown in Figure
3a and 3b. Figure 3c is a plot of y{n] vs. z[n] with
frozen paraineters and the neural network modeled
the nonlinearity almost perfectly while the third-
order Vollerra model yiclded a very poor approxi-
mation.

yreee

raf

PO A

e
- - - - -

Figure 3a. Neural modeling error

: :’ " i
(R 0 0 R R RO O AR
oo R " i i;“,i ‘

N B ; 1 Hn! B b 3‘
Julll F ‘;.x..l Jiadl o Mﬁnf! fl.“!'ﬂl(lﬂfv. kh'u‘l

|
-

i
-

Figure 3b. Volterra modeling error

Neural Network

Third-order Volterra model

Figure 3c. Modeled nonlinearity




odel 2
yin] = ! z[n] * z[n - 1) if x[n] > 0
0.4 x z[n]+0.9 x z[n — 1] otherwise
which is a threshold model. Ilere z{n] was a uni-
formly distributed random variable with excursion
[-0.9, 0.9] but the desired output for both the neu-
ral network and the Volterra simulation was scaled
down to lie between {-0.9,0.9] (within the range of
tanh). The neural network had a 2-5-5-1 structure
and Figure 4 shows the frozen error after conver-
gence for the two simulations.

L Lo Liad

Figure 4a. Neural modeling error

Figure 4b. Volterra modeling error

6 Discussion

The first model considered does not have a Volterra
scries representation if the range of z[n] is more
than (-0.2, 0.2), which is the case here. The sec-
ond model considered also does not have a repre-
sentation in Volterra series and the neural network
being a more general model as was shown by the
expansions, models this system with a much lower
modeling error.

A point to note here is that the structure of the
model being simulated was not used in the neu-
ral network simulation as there is no known way
to use apriori information for choosing the network
weights. Also, the error achieved after freezing the
weights is not the lower bound, the adaptation was
stopped when the error level reached an accept-
able low value. The neural network model param-
eters (weights) are few as compared to the number
of terms in the numerator and denominator series,
hence there are several constraints on the values of
the weights and training of these networks requires
fine adjustment of the learning parameters.

7 Conclusions

In this paper we have shown how the multi-layered
neural network is able to approximate arbitrary
nonlinear systems while the Volterra series mod-
els cannot give a representation for these simple
bounded-input, bounded-output models. This has
been shown by analyzing the form of the nonlinear-
ity and using its expansion to compare with those
of the Volterra series. Finally, simple models are
simulated to support the theory.

References

(1] L. Ljung, System Identification: Theory for the
user. Englewood Clifls, New Jersey: Prentice Hall,
1987.

(2] S. Billings, “Identification of nonlinear systems - a
survey,” Proc. IEE, Pt. D, vol. 127, pp. 272-285,
November 1980.

[3] A. Lapedes and R. Farber, “Nonlinear signal pro-

- cessing using neural networks: Prediction and sys-

tem modeling,” tech. rep., Los Alamos National
Laboratory, LA-UR-87-2662, 1987.

[4] M. Schetzen, “Nonlinear system modeling based on
the wiener theory,” Proc. IEEE, vol. 69, pp. 1557~
1573, December 1981.

(5] P. Ramamoorthy, G. Govind, and V. Iyer, “Sig-
nal modeling and prediction using neural networks,”
in INNS First Annual Meeting, Boston, September
1988.

[6] R. P. Lippmann, “An introduction to computing
with nenral nets,” IEEE ASSP Magazine, vol. 4,
pp. 4-22, April 1987.

(7] G. Cybenko, “Approximation by snperpositions
of a sigmoidal function,” tech. tep., Unpublished
manuscript, 1988.




TFESIcCc. 92

ADAPTIVE FUZZY EXPERT SYSTEMS FOR CONTROL
APPLICATIONS

P.A. Ramamoorthy, Shi Zhang and Song Huang

Department of Electrical and Computer Engineering, University of Cincinnati, M. L. 30,
Cincinnati, OH 45221-0030, USA

ABSTRACT. A fuzzy expert system (FES) in general performs the task of functional map-
ping (that is, for a set of values of the inputs, the corresponding values of the outputs are
produced), and hence can be used for system modeling or controller design. The functional
mapping is achieved based on the six attributes of the system, namely, inputs, outputs,
fuzzy sets of the inputs and outputs and their associated membership functions, fuzzy as-
sociative rules and the defuzzification procedure. The first four attributes can be defined
rather easily based on some knowledge about the problem at hand. However, it is difficult
to obtain the other attributes due to the non-availability of experts or the inability of the
experts to represent their knowledge in a form needed by the expert system. Also, even
in situations where the rules are available, they may not be optimal. Hence the need to
develop adaptive techniques to optimize the performance of a fuzzy expert system. In this
paper, we present a very general and systematic approach to this adaptation problem and
discuss the advantages of such an approach. The problem of backing up a truck to loading
dock from any reasonable location is used as an example and an optimal controller has
been designed for this problem using this approach. The results obtained indicate that the
approach is indeed viable and can be applied to many problems. .

KEYWORDS Fuzzy logic; Fuzzy controller; Adaptive fuzzy systems; Fuzzy expert systems.
INTRODUCTION

Fuzzy expert systems can be considered as vehicles for functional mapping that maps an input
u (a vector of size N ) into an output y (a vector of size M ) by the function f: u — y. The functions
f can be nonlinear. The mappings are obtained by splitting the inputs and outputs into smaller
and overlapping intervals or fuzzy sets, assigning membership functions (that indicate the degree of
belonging of a particular input or output value to the various fuzzy sets of those inputs or outputs),
fuzzy rule base or fuzzy associative memories (FAMs) that define the output fuzzy sets to which
outputs belong for inputs belonging to certain input fuzzy sets, and defuzzification procedure that
leads to crisp output values from the selected output fuzzy sets and the membership functions.
More details on fuzzy logic and fuzzy expert systems can be seen in references [1-5).




Desired Actual

Output [ ] I Output
E — Fuzzy | Process or
! Coarroiler Plaat
]

Figure 1. Fuzzy expert system as a coatroller for
coatrolliag a process.

Fuzzy expert systems can be excellent candidates as controllers for controlling machines and
processes (Fig.1) as they enable implementation of complex mappings, especially nonlinear ones,
through a systematic procedure involving linguistic representation of common-sense knowledge.
Further, it allows a model free representation of the mapping and hence overcomes the limitations
and the problems associated with model-based controllers.

A minimum requirement in the use of fuzzy expert systems is that the fuzzy rules are available.
In many practical applications, it is possible to arrive at approximate rules ! though such available
rules may not lead to an optimal controller. In this paper, we propose the adaptation of the rules
to arrive at an optimal controller. The approach is explained through a specific example defined in
the following section.

PRORBLEM DEFINITION

[lere we consider the problem of designing an optimal controller to successfully back up a truck
to a loading dock from any reasonable initial location. This is a typical controller design for a
nonlinear plant. Nguyven and Widrow [6 ] recently showed that a nonlinear controller in the form
of two-layer neural network architecture with 26 nodes can be successfully designed. We chose this
problem as an example since the mapping is complex and involves a large number of starting points
and trajectories. Kong and Kosko [7] considered the same problem and compared the performance
of such a neural network based controller with that of a controller based on fuzzy expert system
composed of 33 rules. They observed that even their simple FES lcads to smoother trajectories
than those produced by the two-layer network. We use their rule base as a starting point for our
adoption procedure.

Fig. 2 shows the details of the truck-backer-upper problem and input and output variables
of the system. Given enough clearance between the truck and the loading dock, the y-position
can be omitted as an input to the controller. The ranges of the inputs, x-position, and the truck

NI this is not readily obviows, one should comsider the tasks such as driving, operating a machine tool etc and the
basis for their operation. \We do such tasks sub-consciously or as-a-matter-of-fact. Once we master the techniques,
we can put them into approximate rules with some effort.




x ‘..._..{7
P 4 —-—‘1; Coatroller y # ‘ Truck X.y. ¢
ovspami H l
!
X, ¥) = (X. ¥) + {dx. dy) Loading dock
( new old {100.100)
i
dx = r cosio + 9), dy = rsin(o + 0} (50.100) j
{a) A !
! :
l ; {x.5)
| L
I -]
| frome
00  ——— x (1000)
Figure 2. {a) Block diagram of a fuzzy axpert system based controw.er
to back-sp 3 treck. .
)
1) Details of the ioading zone and the truck. (
orientation angle ¢, and the output, steering signal 8, are given as:
¢ : {0,360}: z : [0.100}; 0 : {-30.30]
m{e)
N
1.’
p ; } zT~position
0 Py %0 . Lz x ce a rr
13 ”n 4} ] s : n
@ <)
1.3 oo s ™ n | n
T_\/Y?{\//— e WM m | s m |
S ' @ w | m ™ ’
0 % 100 l Zz | om |
wi = » s M 8
Lo L n " ns p+ 4
o ” ”n m /] e

Figure 4. The rulebase of the truck back-up problem.

Figure 3. Mammbership fuscuions of the vanoes {uzzy sets of
the input and the outpat anables.

Having identified the variables and their ranges. fuzzy subsets of the variables must be specified.
Fuzzy subscts are simple linguistic terms and associated numerical values corresponding to the
input and outpnt variables. They are used to split the total range of the variables into smaller and
overlapping ranges. The next step is the selection and identification of the membership functions
associated with the various fuzzy sets. The membership functions simply describe the degree of
association o(. a particular input or output value to the fuzzy subsets corresponding to that input or
output variable. The membership functions of the 10 variables for the truck-backer-upper problem




are given in Fig. 3. Membership functions can have different shapes depending on the designer’s
preference, knowledge or experience. Triangular and trapezoidal shapes are used here for simpler
calculation and better description of the problem.

A fuzzy rule base or fuzzy associative memory (FAM) is a collection of fuzzy rules which define
or describe the relationship between the input fuzzy sets and output fuzzy sets. The rules are given
in the conventional IF-THEN form, with an antecedent part that describe the conditions, and a
consequent part that states the conclusions or actions. Fig.4 is the rule base for the truck-backer-
upper controller problem as defined by Kong and Kosko. This rule base indicates the possible
ranges for the output values given the input values. The final crisp output values of a fuzzy expert
system are determined using a procedure known as the defuzzification process. Min and Max infer-
ence with centroid method is mostly used as the defuzzification procedure and truck-backer-upper
control problem as well. The MIN-centroid procedure is illustrated in Fig. 5 and is carried out as
follows:

Input A Iapet B l <\
Example: R12: [F A is RV 2ad Bis CE '

TAENCis PS I ]
R7T:-FAisVEad Bis C2
Ostpar C
THEXCis 2E

Figure 8. As example of MIN-Centroid procedure.

If the inputs x,4 are x-0 and ¢y respectively, at some particular instant, xq can fall under the
domain of a maximum of two fuzzy sets (assuming that the fuzzy sets are chosen to lead to a max
of two fuzzy sets for any input value) and ¢ can similarly fall under the domain of a maximum of
two fuzzy sets. Thus we have either one, two or four rules firing for any given inputs values. In
the case of a single rule, if the rule is in the form of “AND” (OR), the values of the membership
functions at x = xo and @ = @9 are found and the minimum (maximum) is chosen. This value is
used to clip the output membership function corresponding to the output fuzzy set selected by the
rule and the centroid of the clipped area becomes the output 8y of the fuzzy system. If more thz-
one rule gets activated, the combined centroid of the clipped area is the output. The trajectories




of the truck from various initial positions backing up to the loading zone controlled by this fuzzy
expert system is given in Fig. 6 (for clarity purposes, we have shown this as four separate diagrams
corresponding to various starting positions). Though Kong and Kosko claimed that the trajectories
produced by the FES are better thar the ones produced by the neural net controller, it can be
observed that the FES controlled trajectories are not smooth either.

ADAPTIVE FUZZY CONTROLLER

We have a fuzzy controller that succeeds in backing up the truck to the loading dock from any
starting point. However, the performance is not very satisfactory and thus there is the need to
consider adaptation of the fuzzy controller to obtain more smoother trajectories.

po oo ® 't XY J

'L X1 N J (22 XX X' |

Fig. § Treck trajectaries of the erigisal comtroller

There are many ways that the {uzzy system or controller cau be adapted to optimize the per-
formance. In Fig. 7, we show the general concept. There we have, in addition to showing in block
diagram of the steps involved in calculating the output of a fuzzy system. shown weights at strate-
gic places which can be adapted or modified to obtain improved performance. We can also define
different weights corresponding to each segment of the membership function with a constant slope
and regions where the fuazy sets overlap and so on (Fig. 7B). Such assignments would make the




Block diagram of a an adaptive MIN/CENTROID method
of output calculation,where the weights have to be

adjusted to obtain the required mapping. Steps shown are
for one output calculation when J rules are invoked

ABBREVIATION

N - Number of inputs

M - Number of outputs

X; - ith input )

¥i - ith output

Xio = Value of ith input at a particular time

¥:i0 = Yalue of ith output at a particular time

MFei(y;) < .\[cmbershiglﬁmction of fuzzy set Lj of output v;

.\l\'j,l({r‘o) - Maembership fuaction value at IT; = I of the
fuzzy set of input x; that invokes rule j

MFey (i)
.\(Vl,l(zm? Chipped Amlxw
: MIN Membership

: - <> | Function area
. Net ‘ L .
MVl (zn centroid | Centroid(l)
e calculation W
temnen——

| - 1}
rule#:1
common y
centroid ,..(:9_"0__
calculation
MFLs (%)

Areal])

MVI (Zw), o
pped l_@ -
_‘,—@‘“' FMuubcnhip !
. MIN <) | Fuaction area .
MVIz {zya) | Ne con‘t‘roi g (Centroid(J)
——@—.’ calculation |

et

! J

Fig. 7A

MY
- — MAX
laput or Outpus

un~mm“~lb“l¢yn"~




adaptation simpler by making the individual adaptation domains smaller and lead to a technique
that can be analyzed in a systematic manner. In this paper, we consider adaptation of the weight
in the overlapping fuzzy regions only. The optimization is performed as follows:

We assume that the truck is at some random position (Zoid, Yoid, Poid) and the corresponding
controller generated angle is 8,i4. The truck moves by a fixed distance with a steering angle of 4,!d,
and comes t0 a new POSition Znew, Ynewr Pnew, aDd the corresponding controller angle for the new
position is denoted as 8,.,,. The objective function minimized is then given by:

J= (onew - old)2

and leads to weight update equations:

Aw = g[lnew — Ooid]
Wnew = Wold + Aw

where ¢ is a positive, very small constant. After the weights are adjusted using the above update
equation, the truck is moved to a new random location and the process is repeated (we stopped
the algorithm after 10,000 iterations). The results are shown in Fig. 8-12. In Fig. 8 we show
the learning curve of two of these weights . Figs. 9-11 give a specific trajectory of the truck, the
truck angle ¢ , and the steering angle (control signal) using the original and the optimized fuzzy
controllers. Fig.12 shows the performance index that is being minimized. In Fig. 13, we show the
trajectories starting from various initial positions. As can be seen from the figures, we are able to
achieve substantial improvement in the performance by attaching weights to the rules and adapting
them.

SUMMARY

The use of tunable fuzzy expert systems as nonlinear controllers in the control of a nonlinear
plants is considered in this paper. We show how weights can be attached to fuzzy expert systems
in a systematic manner and adapted to optimize a desired performance. Results from a specific
application are shown and the results indicate that it is indeed possible to achieve good performance
by tuning the controller. Of course, more work needs to be done along the lines indicated in this
paper. We are currently working on those problems.

REFERENCE
(1] L.A. Zadeh, “Outline of a New approach to the Analysis of Complex Systems and Decision
Processes,” IEEE Trans. SMC, pp. 28-44, 1973.

(2] L.Z. Zedeh, “Commonsense Knowledge Representation Based on Fuzzy Logic,” IEEE Comp.
Vol. 10, pp. 61-65, 1983.




Porb smuns ity

¢ o e

Fig. 8. Diagram of tbe learning course of two of 1he warghts

Fig. 10 Truck angles 0 usiag the origiaal coatroller
and the optumuzed costroller

r__§ ¢ % .8

t

|.l
]
' A L] .
. e » » - » ] . - ]
o

b 12 Dragresn o sae perierenes whee wmy Uie egrael samirttn
wd o eptimiend sontoviln

™o

»
A ]
Fig- 9 Truch tragectanie usinig LRe Originas CORLIOUL
and the optimized contruller

o
o
3
o
b
-
Q1
e
s

] » » - » - » - L] ]

Fig. 11 Steenag ugnals ¢ using the original controller
ats :he opt.auzed controller

Fig. 13 Treeh

of the op




(3] Fuzzy Sets and Application:Selected Paper by L.A. Zedeh, ed. R.R. Yager et al. John Wiley
and Sons, 1987.

{4) L.A. Zadeh, “Fuzzy Logic,” IEEE Computer, pp. 83-93, April, 1988.

(5] B. Kosko, “Fuzzy Entropy and Conditioning,” Information Sciences, Vol. 40, pp. 165-174.
1986.

[6] D.Nguyen and B.Widrow, “The Thuck Backer-upper: an example of self-learning in neural
networks,” Proceedings of IJCNN 1989, vol. 2, pp. 357-363, June 1989.

[7] Seong-Gon Kong and Bart Kosko, “Comparison of Fuzzy and Neural Truck Backer-Upper
Control Systems,” Proceedings of IJCNN 1990, Vol. 3. pp 349-358, June 1990.




Cerebellar Model Articulatioh Coﬁtmlier Neixral
Network — A Simple Fuzzy Expert System in Disguise?

P.A. Ramamoorthy, Song Huang
Department of Electrical & Computer Engineering,
University of Cincinnati, M.L. #30
Cincinnati, Ohio 45221-0030

ABSTRACT

Neural networks and fuzzy expert systems have attracted the attention of many
researchers recently. In general, fuzzy logic uses verbal information for handling
higher-order logical relations between inputs and outputs which are not crisply
defined. On the other hand, neural ne‘works are used to obtain information
about systems from large input/output observations and training or learning
procedures. Thus, fuzzy logic and neural networks solve the same problem using
different formulations. In this paper, we provide some insights along these lines
by comparing a particular neural network architecture, that is, the Cerebellar
Model Articulation Controller (CMAC) with fuzzy expert systems. We show that
CMAC is in reality a simplified version of a fuzzy expert system though the former
has been derived independently from biology-telated concepts. We further show
that these equivalences can be exploited to arrive at superior system modeling
techniques that will retain the important aspects of these two areas. Such an
approach will have both the design by trainability aspect of CMAC architecture
and the decision making based on fuzzy or imprecise data property of fuzzy expert
systems.

INTRODUCTION

Research in artificial intelligence, neural networks and fuzzy expert systems has progressed
in parallel lines with one or the other (at one time or another) considered as the best and catch-
all-solution for all the problems in the world. In reality, each method has its own advantages,
and drawbacks and can be applied to only certain types of problems. The strengths of neural
networks are the ability to learn specific input-output mappings from large input/output data
samples possibly corrupted by noise, greater degree of robustness and the ability to adapt or
continue learning. The strengths of fuzzy expert systems are the ability to deal with fuzzy
information and incomplete or imprecise data in a structured or logical way. On the negative
side, in the case of neural networks, questions such as how one can decide on the number
of layers or nodes in the network, how one can train large. networks or incorporate some
structural information that one may have into such a network and if the network is successful
in solving a problem, how one can explain their performance etc. remain open. In the case of
fuzzy expert systems, the questions are how one can obtain a fuzzy rule base or fuzzy associate
memory (FAM) if no expert is available or if the expert is unable to put his/her knowledge
into a form which can be processed by computers or what to do if such rules themselves
are not perfect or optimal. Since both of these techniques implement the same task (that
of functional mapping and we can regard "inferencing” as one specific category under this
class), a fusion of the two concepts that retains the individual strengths while overcoming
their individual drawbacks will have excellent applications in the real worid.

In this paper, we use one particular neural network ~ Cerebellar Model Articulation Con-
troller (CMAC) - as an example to show that the concepts of inferencing by large data samples
through a well connected network (the case of neural networks), and the inferencing through a
set of fuzzy rules as well as their fuzzy sets and membership functions (the case of fuzzy expert
systems) are very similar. The similarity exists not only in the aspect of causality (conducting
inferencing through structural ways), but also in the aspect of methodology (breaking input
domains into smaller subsets, sparse and regular interconnections between input and output

261




domain). In the particular case of the CMAC network, we also show that it is a simple version
of fuzzy expert systems.

CMAC NEURAL NETWORKS

A neural network can be considered as a system that maps an input u, a vector of size N,
into an output y, a vector of size M, by the function f : v — y [1]. The mapping is performed
in the network or system by weighting each and every input, summing the results, subtracting
a bias value and passing the result through a nonlinear function which may produce a binary
or bipolar or continuous value (between -1 to 1) for each output. Thus, it can be noticed that
a neural network is nothing but a non-linear network. The mapping function f is assumed to
be unknown and is estimated from several numerical I/O samples (u;, y;) through the training
procedure. :

Above, we described a one-layer feed-forward model of a neural network. It is widely
assumed that the Kolmogrov’s theorem on functional approximation is a proof that a two-layer
neural network is sufficient for approximating arbitrary non-linear systems given sufficient
number of hidden nodes [2]. But, it is only an existence proof and does not tell us how to
arrive at the network. In fact, there surfaced questions as to whether this- theorem itself is
applicable to the problem at hand {2], but we are not concerned about that issue here. From
our perspective, a neural network is a non-linear system with interconnected neurons, which
maps an input into the output via the non-linear function f, and the function f is not given
or known but estimated from a set of numerical I/O samples.

The Cerebellar Model Articulation Controller (CMAC) neural network was introduced
by Albus [3, 4, 5] and seems to be getting renewed attention through the work of Miller,
et al, [6, 7], Ersu, et al., (8] and Moody [9]. CMAC has been suggested as an alternative
for backpropagation networks ! to achieve better performance [7]. Since backpropagation is
basically a gradient decent technique, applied to a multilayer nonlinear network it needs a
large computation time, converges slowly for large systems, and has an error surface which
may contain local minima. The CMAC network contains a single linear feedforward network
that has to be trained and hence does not require error propagation etc. and therefore can
learn the mapping rather quickly.

If we go through the description of the CMAC network, we will find definitions such as
input sensors, receptive fields, input generalizations, input quantization, threshold logic gates,
state-space detectors, collisions, virtual addresses, random hashing functions and multiple field
detectors. Figure 1 is a simple example of a CMAC neural network from Miller et al. [7]. It
has two inputs and one output. The operation of a CMAC neural network can be explained
in simple terms as follows: 1. Each input is represented in a non-weighted representation with
one "on-off” or binary line for each quantization level (for example, if the input ranges from 0
to 255 and spans only integer values, we will have 256 lines). 2. A certain number of adjoining
lines are combined into a single entity, called input sensors (input generalization). They may
overlap, leading to the term offset (input quantization). 3. The input-generalizations from
various inputs are connected to a set of AND gates, called state-space detectors, in a regular
and sparse fashion in order to reduce the interconnections. 4. These state-space detectors
are connected to a smaller set of OR gates, called multiple field detectors. The connections
are determined by assigning virtual addresses to the AND gates and passing the addresses of
the active AND gates through a random hashing function. 5. The outputs of these multiple
field detectors are weighted to produce the final results. The weights are determined, or
equivalently the mapping function f is determined, based on observed data pairs (u;, %) and
supervised learning. In Figure 1, the input sensor’s receptive fields are of rectangular shape,
i.e. the output of the input sensors are binary values. Miller, et al., recently modified the
original CMAC architecture [10] where it is suggested that: 1. The input sensors implement
local receptive fields with tapered sensitivity functions (that is the sensor output is 1.0 if the
input is in the center of the receptive field, and the output decreases linearly towards 0.0

1 Backpropagation refers to an approach used to train multilayer networks and can be applied to any
network. Hence it is not correct to call the multilayer perceptron network as a backpropagation network. We
use it here as it has become a common practice.




for inputs near the edges of the fields). 2. The state-space detectors can be considered as
analog units ( multiplication rather than logic AND gates) with the property that the unit
output is 1.0 if all inputs are 1.0, while the unit output decreases to 0.0 if any input decreases
to 0.0. 3. The multiple field detectors can be considered as simple summing units (rather
than logic OR gates). The network output is then the sum of products of a certain number
of non-zero multiple field detector outputs and corresponding weights. It is indicated that
the modified CMAC architecture has better properties than the original CMAC because the
modified version provides continuous instead of piece-wise function approximations..

FUZZY EXPERT SYSTEMS

Fuzzy logic developed by L.A. Zadeh [11, 12] can also be considered as a system for
mapping (linear and nonlinear). The mappings are obtained by splitting the inputs and
outputs into smaller and overlapping intervals or fuzzy sets, assigning membership functions
(that indicates the degree of belonging of a particular input or output value to the various
fuzzy sets of those inputs or outputs), fuzzy rule base or fuzzy associative memories (FAMs)
that define the outputs fuzzy sets to which (expected final) outputs belong for inputs belonging
to certain input fuzzy sets, and defuzzification procedure that provides the crisp output values
from the selected output fuzzy sets and the membership functions.

To better explain the concept of how a fuzzy expert system conducts inferencing, an
example from Kong and Kosko’s paper is described [13]). The problem is to design a fuzzy
controller to successfully back up a truck to a loading dock from any reasonable initial location.
The inputs to the controller are the z, y positions of the truck and the truck orientation angle
¢ measured with respect to the z axis and the output is the steering signal . For a given
command signal 4, the truck will move by a fixed distance and wait for the next signal from
the controller. It is indicated that if enough space is given between the truck and the loading
dock, then the y-position can be omitted as an input to the controller. The ranges of the
inputs, z and ¢, and the output, 8, are given as: ¢: [ 0, 360]; z: [ 0, 100]; 4: [-30, 30].

Having identified the variables and their ranges, fuzzy subsets of the variables and their
membership functions must be specified. Fuzzy subsets are simply linguistic terms and their
numerical values corresponding to the input and output parameters. They are used to split
the total range of the variables into smaller and overlapping ranges. Membership functions
describe the degree of belonging of a particular input value to the various fuzzy sets and
can have different shapes depending on the designer’s preference or knowledge or experience.
Triangular and trapezoidal shapes are used here for simpler calculation and better description
of the problem. The membership functions of the variables for the truck-backer-upper problem
are given in Figure 2.

s(e)

a(z)
SUM 1.
QUTPUT :
o W

/ : - ™

(0
INPUT FIELD

SENSORS DETECTORS

F1G. 1. A simple CMAC with 2 inputs and 1 output. FiG. 2. The membership function of TBU.

A fuzzy rule-base or fuzzy associative memories (FAMSs) is a collection of fuzzy rules
which define or describe the relationship between input fuzzy sets and output fuzzy sets.
The rules are in the conventional IF-THEN form, with an antecedent part to describe the
conditions and a consequent part to state the conclusions or actions. Figure 3 is the rule-

'.ol‘nnqmcm‘n

I
ERRr b D




base for the truck-backer-upper problem defined by Kong and Kosko. This rule-base simply
indicates the possible ranges for the output values given the ranges for the input values. The
final crisp output values of a fuzzy expert system is determined using a procedure known as
defuzzification process. The centroid method is mostly used as the defuzzification procedure
and for the truck-backer-upper control problem as well. The trajectory of the truck starting
from a given position backing up to the loading zone controlled by a fuzzy expert system is
given in Figure 4.

z-pesition
LE Le CE RC RI
ns ” PB ] n
ng <4 ¢ ] m P ¢ )
wl m m PS m ] Sta.ftfng
angle Position:
(o) Ve n " 2 4 M 2 ] L / z =230
L n w us m 4 | 1 y= 20
! ¢ =30
L | 2 ] | ¢ ] [ 2] | ZE
| i ] .
| rn ™ s FIG. 4. A trajectory of the truck

ing a fi troller.
FIG. 3. The rulebase of the TBU. using a fuzzy controller

MULTI-LAYER NN AND CMAC VS. FUZZY EXPERT SYSTEMS

From the definitions or steps involved in the implementation of CMAC neural networks
(we discuss in terms of CMAC networks since it has been demonstrated that CMAC provides
better performance than multi-layer networks) and fuzzy expert systems, it is clear that there
is a good amount of similarities between the two approaches. The original CMAC can be
considered to be a fuzsy expert system implementation where the receptive fields correspond
to the fuzzy sets of the inputs with rectangular membership functions. The modified CMAC
by Miller, et al., [7] modifies that membership function to a triangular one. In both, the
input sensors correspond to joining many adjacent quantization levels of the input and thus
correspond to the range selection for a fuzzy set. The output of the input sensors can then
be thought of as pointers (binary valued) to those range of input values where a specific
pointer becomes one only if the input falls in that range and zero otherwise. We can call
such pointers as IFSPs (Input Fuzzy Set Pointers). Next, the outputs of these sensors (from
different inputs) are ANDed (state space detectors) and the outputs of such units are ORed
(multiple field detectors) in the original CMAC. It can be noted that the relationships between
the outputs of these multiple field detectors (which are binary valued) and the outputs of the
input sensors are expressible in boolean-sum-of-product form. If we define OFSPs (Output
" Fuzzy Set Pointers, binary valued) corresponding to fuzzy sets of outputs, the fuzzy rule base
corresponds to a set of boolean-sum-of-product expressions for OFSPs in terms of IFSPs.
Thus, the outputs of multiple field detectors in CMAC correspond to OFSP values in fuzzy
expert systems. Finally, the output of 8 CMAC is simply a (linear) weighted version of these
pointers?, where as a fuzzy expert system uses more complex procedures (MIN,centroid, etc.,
operations) to produce the final output. Thus, the complexity is in the front end for a CMAC,
where as it is uniformly distributed in the fuzsy expert system.

From the above descriptions, it can be inferred that a CMAC is indeed a simple fuzzy
expert system in disguise. In the case of fuzzy expert systems, as we are able to solve the
problem with very few fuszy sets (of each variable). In the case of CMACs, as we do not make
use of any available knowledge, we have to make use of a large number of fuzzy sets or input
sensors. There are certain advantages in a CMAC approach over a fuzzy expert system. The
use of a large number of multiple field detectors (or OFSPs) might allow the approximation

21t can be argued that in the modified CMAC, s triangular membership function is attached to each input
mmg.nndtheexwvﬂmofthmanbmhipfmcﬁonuthegiminputnluumodiﬁuthenheol’
these pointers to something in the range 0 to 1.




of complex and arbitrary mappings®. Also, the training and linear stage for training makes
the CMAC an attractive architecture for machine learning.

We can arrive at a new architecture (we call it "Neuro-Fuzzy” architecture) that will
combine the properties of both neural networks (structure and trainability) and fuzzy systems
(incorporation of apriori information, such as fuzzy sets and membership functions) without
any of their drawbacks. Such a structure would be similar to the architecture shown in Figure
5. One would start with given I/O samples, make some assumptions about the number of
fuzzy sets, their ranges and membership function shapes and train the various networks in
Figure 5 in a systematic manner. That is, the number and the ranges for the fuzzy sets will be
adapted based on I/O samples and once they are learned, the third network will be trained.
The third network can again be decomposed into a number of smaller networks as shown
in NN#2 of Figure 5. Since the data sets for each network will be comparatively smaller,
the training can be achieved at a faster rate. Further, this architecture can be used as an
implementational vehicle for fuzzy expert systems with a large number of input variables. The
classical approach of implementation of fuzzy expert systems becomes too time consuming in
such a case as the number of rules increases exponentially with an increase in the number
of input variables. We are now looking into the various issues in the trainability of this
architecture and other related issues. We give results of an example based on this technique
in the next section.

NUMERICAL EXAMPLE

We tested the trainability of our neuro-fuzzy architecture using the truck-backer-upper
controller problem. The truck-backer-upper fuzzy expert system controller has 7 input fuzzy
sets for z-position, 5 sets for orientation angle ¢, and 7 output fuzzy sets for the steering
signal 8. Since more accurate results are required when the truck is in the center area or
near the center area, we selected more samples for z-position around 50, and less samples
otherwise. The training samples of ¢ are chosen in the same fashion. It led to 34 z-positions
and 72 ¢ angles. Thus 2448 samples are used to train the controller. The y-positions are
not used in training, thus simplifying the training process. There are 7 sub-networks in the
system. The whole set of training samples is divided into 7 smaller groups according to their
belongings to the output fuzzy sets. The largest group contained 826 training samples and
the smallest one has 271 samples. Some samples are used in more than one subnet due to the
overlapping of the fuzzy sets. This brought the total training samples for all subnets to 3624.
We selected 10 neurons for the second layer of every subnet. The backpropagation algorithm
was used for the training. The number of iterations for training varies from a few hundred
(for smaller sample groups) to a few thousand (for larger groups). The average squared errors
are from 0.0005 (for the centered or near center sets) to 0.0015 (for the extreme sets). The
training samples were normalized to the range of -0.5 to 0.5. To show the robustness of this
architecture, we tried two different approaches for the training. In one training procedure,
we used the inputs, the desired outputs and input fuzzy set pointers as training samples. In
the second method, we used membership functions of the input fuzzy sets rather their IFSPs
as training samples. The truck trajectories produced by the trained networks are shown in
Figures 6 and 7 respectively. As can be seen from the figures, the results are very encouraging.

CONCLUSION

In this paper, we compared the fuzzy expert systems with certain neural networks and
show that a fuzzy expert system can be thought of as an advanced version of multilayer
feedforward networks and CMAC networks. We show that a fuzzy expert system can be
considered as a number of multilayer feedforward networks interconnected in a structured
manner and the interconnection is defined by the concepts of fuzzy sets, fuzzy rules and

3Fuzsy expert system proponents might in turn argue that they can be achieved using few OFSPs and
complex membership functions. Further, they may also question the need for such arbitrary mapping in
real-world applications.




so on. More importantly, we show how these two powerful areas, that of neural networks
and fuzzy expert systems, can be combined together to arrive at superior architectures and
methodology to design adaptive intelligent systems.

Block Diagram of NN#1
lapete irse oFsP | IFSPs are
(masey) on (lepet Pusey 2 layer (Output Pussy used for
St Possten) Mere Sot Pasaters) training.
] Net 1. AND Net (M) .
2. OR Nat i Starting
L Position:
z=30
# of OR gaaen = # of [FSP # S AND grims = # of Rulw y=20
# Ok guiws = ¢ of OFSP ¢ =30

Block Di of NN#2
- FIG. 6. A truck Trajectory using
Outputs [ 2}
oY Easii the Neuro—-Fuzzy controller.
L Trasmng Data Sub-Nat 91
Selecior 91 %'”
Membership
2’:‘.": 2.’“ orse St function
: ’ P values are
bivdent SNt 93 used for
training. Starting
Position:
z =30
‘:m y=20
Truaseg Dota Seb-New @M1 é =30
Selecve  OM!

FIG. 5. A block diagram of the new Neuro-Fuszy model. FIG. 7. A truck trajectory using
the Neuro-Fuzzy controller.

REFERENCE

1. R. P. Lippmann, *An introduction to computing with neural nets”, IEEE ASSP Magazine, 4-22
(April 1987).
2. G. Cybenko, “Approximation by superpositions of a sigmoidal function”, Technical Report, Uni-
versity of Illinois (1988).
3. J.S. Albus, “A theory of cerebellar functions”, Mathematical Biosciences, 10, 25-61 (1971).
4. 1.S. Albus, “Theoretical and Experimental Aspects of a Cerebellar Model”, PhD thesis, Univ. of
Maryland (1972).
5. 1.S. Albus, “Data storage in the cerebellar model articulation controller”, I.of Dynamic Systems,
Mearurement and Control, 228-233 (Sept. 1975).
6. W.T. Miller, “Non-linear learning controller for robotic manipulators”, Proc. SPIE, Intelligent
Robots and Computer Vision, 726, 416-423 (Oct. 1986).
7. W.T. Miller, F.H. Glanz, and L.G. Kraft, “CMAC: An associative neural network alternative to
backpropagation”, Proc. IEEE, 1561-1867 (Oct. 1990).
8. E.Ersu and H.Tolle, “Hierarchical learning control— an approach with neuron-like associative
memories”, Proc. IEEE Conf. on Neural Infor. Proc. Systems (Nov. 1988).
9 J Mody, “Fast learning in multi-resolution hierarchies”, in Advances in Neural Information Pro-
, edited by D.Touretzky (Morgan Kaufmanan, 1989).

.T. Miller, E.An, and F.H. Glanz, “The design of cmac neural networks for control”, Proc. 6th
Yale Workshop on Adaptive and Learning Systems (Aug. 1990).
11. L.A. Zadeh, “Outline of a new approach to the analysis of complex systems and decision pro-
cesses”, IEEE Trans. Systems, Man and Cybernetics, SMC-3, 28-44 (1973).
12. L.A. Zadeh, “Fuzsy logic”, IEEE Computer, 83-93 (April 1988).
13. S.Koag and B.Kosko, “Comparison of fuszy and neural truck backer-upper control systems”,
Proc. of IJCNN, ]]], 349-358 (June 1990).




Proceedings of the IELE internalivnal Conjercnce on Systems Lngineering

Avgust, 1991, Deyton, Ohio

FUZZY EXPERT SYSTEMS VS. NEURAL
NETWORKS — TRUCK BACKER-UPPER CONTROL
REVISITED

P.A. Ramamoorthy and Song Huang

Department of Electrical & Computer Engineering,
University of Cincinnati, M.L. #30
Cincinnati, Ohio 45221-0030

FAX: 513-356-7326, Email:

ABSTRACT

Research on neural networks and fuzzy logic have pro-
gressed on two independent paths. In general, fuszy logic
uses verbal information for handling higher-order logical re-
lations between inputs and outputs which are not crisply de-
fined. On the other hand, neural networks are used to obtain
information about systems from large input/output obser-
vations and training or learning procedures. From these def-
initions, it appears that fuzzy logic and neural network ful-
fill two complementary functions. Hence, a merger of these
two concepts could lead to powerful yet flexible knowledge
processing tools. This paper provides some insights along
these lines using the truck-backer-upper control problem.
New network architectures by merging these two coacepts
and simulation results for the truck-back-upper problem
using the new architecture are also shown in this paper.

INTRODUCTION

Both neural networks and fuszy expert systems are sys-
tems that map an input u (a vector of size N') into an output
y (a vector of size M) by the function f: % — y. In asim-
ple neural network, the mapping is performed in the system
by weighing each and every inputs, summing the resuits,
subtracting a bias value and passing the result through a
non-linear function which may produce a vinary or bipolar
or continuous value [1,2]. Such networks may be cascaded to
propagate the intermediate results to higher levels for more
sophisticated problems. In the case of fuzzy expert systems,
the ranges of the inputs and outputs are split into smaller
and overlapping ranges or fussy sets. A fussy membership
function is associated to each fuizy subset. The mecha-
nism governing the mapping from the input fuzzy sets to
the output fuzzy sets is a collection of fuzzy rules — fuzzy
rule base or fuzay associative memories (FAM) [3,4]. The
mapping from the inpats u to the outputs y is achieved
through these fuszy rules, the membership functions, and
the defuzzification procedure.

There are similarities and differences between these two
mapping systems. The similarities include provision for
dealing with imprecise data ot data corrupted by moise,
having similar primitives or building blocks to produce non-
linear mapping (membership functions, fuzzy rules, MAX-
MIN or centroid operations, vs. sigmoid functions in neural

pramamooQnest.ece.uc.eda

networks). The major difference is that the fuzzy expert sys-
tems use logic rules for inferencing while neural networks
are data-driven. Therefore, fuzzy expert systems can be
considered as macroscopic tools for information processing,
whereas neural networks are microscopic in nature. The
advantage of the neural networks is their ability to learn
the mapping through training. The advantages of fuzzy
expert systems are their ability to provide nonlinear map-
ping through the membership functions and fuzzy rules, and
the ability to deal with fuzzy information and incomplete
and/or imprecise data. By merging the advantages of these
two systems, one can arrive at a more powerful yet flexible
system for inferencing and learning. This concept will be
explained through the use of results for the truck-backer-
upper control problem.

PROBLEM DEFINITION

The truck backer-upper control is a typical nounlinear
control problem where a controller to successfully back up a
truck to a loading dock from any reasonable initial location
has to be designed. Nguyen and Widrow (5] showed that a
nonlinear controller using a two layer neural network archi-
tecture with 26 adaptive neural elements can be successfully
trained. Recently, Kong and Kosko [6] compared the perfor-
mance of such a neural network based controller with that
of a controller based on a fuzzy expert system composed of
35 rules. They observed that even that simple fuzzy expert
system lead to smoother trajectories than that produced by
the two-layer neural network. If their observations are valid
in general, it is desirable to arrive at a logical explanation
for the differences in the performances. More importantly,
as stated earlier, approaches that can retain the attractive
properties of neural networks and at the same time obtain
performances comparable to that of fuzzy expert systems
need to be developed.

Figure 1 shows the loading zone of the truck-backer-
upper problem and the input and the output variables of
the system. If enough clearance is given between the truck
and the loading dock, then the y-position can be omitted as
an input to tune the controller. The ranges of the inputs, x-
position and the truck orientation angle 6, and the output,
steering signal ¢, are given as:

é: [0, 360); x: (0, 100}; 8: [ -30, 30}




Having identified the variables and their ranges, fuzzy sub-
sets of the variables must be specified. Fuizy subsets are
simply linguistic terms and their numerical values corre-
sponding to the input and output parameters. They are
used to split the total range of the variables into smaller
and overlapping ranges. The next step is the selection or
identification of the membership functions associated with
the various fuzzy subsets. The membership functions sim-
ply describe the degree of association of a particular input
or output value to the fuzzy subsets belonging to that in-
put or output parameter. The membership functions of the
variables for the truck-backer-upper problem are given in
Figure 2. Membership functions can have different shapes
depending on the designer’s preference or knowledge or ex-
perience. Triangular and trapezoidal shapes are used here
for simpler calculation and better description of the prob-
lem.

A fuzzy rule-base or fuzzy associative memory (FAM)
is a collection of fuzzy rules which define or describe the re-
lationship between input fuzzy sets and output fuzzy sets.
The rules are in the conventional IF-THEN form, with an

Loading dock

(100,100)
<s5.10o>
Y T
. g (x.y)
froat
0,00 ———— ¢ (100,0)

I"i‘nxel.'l'helonding:ouonheTBUproblcm.

a(s)
1i{0

360

10)]

v T v

Figure 2. The membership functions of the TBU problem.

antecedent part to describe the conditions and a consequent
part to state the conclusions or actions. Figure 3 is the
rule-base for the truck- backer~upper problem defined by
Kong and Kosko. This rule-base simply indicates the pos-

angle x-position

» LE LC CE RC RI

R8 P8 P8 PN NB NB
RU ZE PS PY P8 P8
RV NB NM PS PM PB
VE NB NM ZE PM PB
Lv NB NM NS PN P8
LU NB NB NM NS ZE
LB PB PB NM NB NB

Figure 3. The rulebase of the TBU problem.

sible ranges for the output values given the input values.
The final crisp output values of a fuzzy expert system arare
determined using a procedure known as defuzzification pro-
cess. Centroid method is mostly used as the defuzzification
procedure and for the truck-backer-upper control problem
as well. The trajectory of the truck from a given position
backing up to the loading zone controlled by a fuzzy ex-
pert system is given in Figure 4. The trajectory of a truck
produced by a two layer neural network accordingly is re-
produced as Figure 5 (Kong and Kosko). The controller
has 24 hidden neurons and trained by over three thousand
samples.

The conclusion drawn by Kong and Kosko is that a fuzzy
expert system controller is superior compared to that of a
neural network. If both fussy expert systems and neural
networks provide robust nonlinear mapping, the difference
in the results of these two systems should not be significant.
One may argue that the differences may be due to the size
of the network, input/output samples used for training and
the number of iterations. (But such practical constraints are
bound to exist). On the other hand, one can argue that even
if such parameters (as the number of nodes) are increased
to the maximum practical limit, the neural network per-
formance may not be comparable simply because the fuzzy
expert systems use more information in a structured way.
We take the later attitude and proceed from these to arrive
at a methodology that will combine the best of both worlds,
trainability in neural networks and better mapping property
of fuszy expert systems. This will become clear in the next
section.

NETWORK REPRESENTATION OF FUZZY
EXPERT SYSTEM

Let us examine the steps in implementing a fuzzy expert
system. Given the exact input values, we first determine

222




the fuzzy sets to which these inputs belong. If we use an
unweightsd binary representation for the inputs (i.e. Q lines
carrying 0 or 1 for Q quantization levels) and one bit per
fuzzy set to indicate if a particular input has fallen under
that fuzzy set (we call this as input fuzzy set pointers),
this step can be represented as an OR network as shown
in Figure 6a. The inferencing from the rule-base can be
thought of as turning "on or off” of the bits denoting output
fuzzy sets based on which input {uzzy set has been selected.
Thus, the inferencing can be represented by a two-layer
AND-OR (or sum of product) network (the second block in
Figure 6a). The defuszification process can be represented
as yet another network whose inputs are the output fuzzy
set pointers and the membership function values for a given
input value. The outputs of this network will be the final
outputs of the fuzzy expert system. This network can be
subdivided into smaller networks, each of which can be a 2
or 3 layer perceptron networks as in Figure 6b. The number
of sub-networks is equal to the number of output fuzzy sets
in all the output variables and each sub-network generates
an output if and only if that network is enabled by the
corresponding output fuzzy set pointer. The outputs from
the selected networks are averaged to find the final outputs.

From the above discussion, it is obvious that these three
blocks constitute a network representation of a fuzzy expert
system. Thus, it is conceivable that the performance will
be poor (degraded) if we try to represent the tasks of these
three individual blocks in a single 2 or 3 layer neural net-
work. One may argue that a 3 layer network is sufficient
to represent any nonlinear mapping. But this is only true
from a theorstical point of view but may not hold from an
engineering point of view.

Having identified the network implementation of a fuzzy
expert system, we can use this structure and any additional
knowledge (besides large input/output samples) that we
may have to find the actual interconnections/weights of the
individual blocks. For example, if we assume that the fussy
sets (of inputs and outputs), the corresponding membership
functions and the fuzsy rules are known but the defussifi-
cation procedure is unknown, the architecture of the first
two blocks can be arrived at very easily and the third block
can be trained using the output f{uzzy set pointers, mem-
bership function values and the desired outputs. Such a
training can be very fast as we have represented the third
block as a number of smaller sub-blocks. Many variations

b

Figure 4. O;e trajectory of the truck by a fuszy controller.

(23
(Y

of this procedure are possible depending upon what kind
of information is available. We will be discussing all such
possibilities in another paper.

Let us now show the results based on the above ap-
proach. There is no training for the first two blocks of Fig-
ure 6a as indicated before. The third block is trained by
1) using both input and output fuzzy set pointers, inputs z
and ¢ values and output values and 2) using output fuzzy
pointers, input membership function values and input, out-

Figure 5. One trajectory of the truck by a NN controller.
put values. The data needed for the training were generated
using the original fuzzy controller.

The truck-backer-upper fuzzy expert system controller
has 7 input fuzzy sets for x-position, 5 sets for orientation
angle ¢, and 7 output fuzzy sets for the steering signal 4.
Since more accurate results are demanded when the truck
is in the center area or near center area, we selected more
samples for x~position around 50, and less samples to the

Block Disgram of NN#)

lopms . orse
(lopus Puszy
(imery) os 2= toyes (Gutpmt Pouzy
$os Pmatens) et St Pointass)
—— iy
e LAND NG | ()
2 O fm
P <L Ok g @ o IFSP # ol AND gram & ¢ of Rules
3 0 4Ok gam = ¢ of OFSP
Bleck of NN§2
COusputs Rum #NY)
” !
Pnandl Trasmng Oosa Sabtes 91
Somer 0 | orsr
[
“""""—]__.{ Sob-Nes 62
Selomay 2 “\1
Outpm
Tewasng Dasa
—-{ Sabmter .,j___* Sebtins 93 }.——-
orsr
N
{ Truaeg Data
__{ i Seb-Mis gM1

The dagram soow - below  far eug sotpes snky.
The Thamag Deta Selossess well b prances wnly he 1he Wamasng phess.

Figure 6. Block diagrams of the FES-NN system.




extremes. The training samples of ¢ are chosen in the same
fashion. It led to 34 x—positions and 72 ¢ angles. Thus 2448
samples are used to train the controller. The y-positions are
not used in training, thus simplifying the training process.
There are 7 sub-networks in the system. The whole set
of training samples are divided into 7 smaller groups ac-
cording to their belongings to the output fuzzy sets. The
largest group contained 826 training samples and the small-
est one has 271 samples. Some samples are used in more
than one subnets due to the overlapping of the fuzzy sets.
this brought the total training samples for all the subnets to
3624. There are 10 second-layer neurons for every subnet.
The backpropagation algorithm was used for the training.
The number of iterations for training varied from few hun-
dred (for smaller sample groups) to few thousand (for larger
groups). The average square errors are from 0.0005 (for the

One trajectory by the fuszy-NN controller.

Figure 7.

Figure 8. One trajectory by the fuzzsy-NN controller.

centered or near center sets) to 0.0015 (for the extreme sets).
The training samples were normalized to the range of -0.5
to 0.5. As stated before, either membership function values
or input fuzay set pointers are used with the input variables
for training the nets. To show the robustness of this archi-
tecture, we did the training by using thess two different sets
of information. A truck trajectory produced by using the
neural network corresponding to case 1) is shown in Fig-
ure 7, and Figure 8 shows one trajectory corresponding to
case 2). It cam be noted that both methods produces su-

perior results than the one gencrated by a two layer neural
network as shown by Kong and Kosko for this particular ini-
tial condition. Further, our own efforts to train a two layer
network with 20 hidden nodes with the same input/output
data was only marginally successful and the performance of
that controller was very poor.

CONCLUSIONS

A fuzzy expert system is characterized by six aitributes:
1) fuzzy input variables, 2) fuzzy output variables, 3) fuzzy
sets of the input and output variables, 4) membership func-
tions corresponding to the fuzzy sets, 5) fuzzy rules connect-
ing the input fuzzy sets and the output fuzzy sets, and 6)
methodology for defuzzification of the fuzzy output. In all
real world problems, we will have (or we can infer) useful in-
formation about the first four attributes based on the prob-
lem at hand. Of these four attributes, only two (number 1
and 2) are presently used in the design of neural network
architectures. We showed that by using the other two at-
tributes, one can arrive at new neural network architectures
that will provide superior performance and also smaller net-
works that can be trained rather easily. This concept is
proved through the use of the design of a new controller for
the truck-backer-upper control problem.

In this work, we considered the training of only one of
the three blocks of our new network. However, if informa-
tion about fuzzy subsets and the rules are not available,
one can train the other two blocks as well using some initial
knowledge about the input and the output variables. Once
these blocks are trained, we can sort of pull out the fuzzy
rules for further examination and modification. Work along
these lines is being carried out presently.

ACKNOWLEDGEMENT

This research work has been supported by a grant NAG
#3960 from NASA Lewis Research Center, by UC-NASA
Center Grant and a grant N 00014-89-J-1633 from Office of
Naval Research.

REFERENCES

1. D.E. Rumelhart and J.L. McClelland, Parallel Dis-
tributed Processing — Ezplorations in the Microstructure of
Cognition, Cambridge, MA. MIT Press, 1986.

2. R.P. Lippmann, " An introduction to computing with
neural nets,” JEEE ASSP Magazine, pp. 4-22, April 1987.

3. L.A. Zadeh, "Fuszy Logic,” [EEE Computer, pp.83-
93, April 1988.

4. B. Kosko, "Fuzzy associative memories,” in Fuszy Ez-
pert Systems (A. Kandel, ed.), New York: Addison-Wesley,
1987.

5. D. Nguyen and B. Widrow, " The truck backer-upper:
an example of self-learning in neural networks,” Preceedings
of IICNN 1989, vol.2, pp. 357-363, June 1989.

8. S. Kong and B.Kosko, "Comparision of fuzzy and
neural truck backer-upper control systems.” Preccedings of
IJICNN 1990, vol.3, pp. 349-358, June 1990.

224




